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1 Probability Theory

This section is intended as a short introduction to the very basics of probability theory, covering
only the basic facts about finite probability spaces that we will need to use in this course.

Definition. A probability space is a triple (Ω,Σ,P), where Ω is a set, Σ ⊆ 2Ω is a σ-algebra,
and P is a measure on Σ with P(Ω) = 1. To recall, Σ is a σ-algebra means:

� ∅ ∈ Σ;

� If A ∈ Σ then Ac = Ω \A ∈ Σ;

� If (Ai : i ∈ N) are in Σ then
⋃∞
i=1Ai ∈ Σ.

Note that, by the second and third condition, Σ is also closed under countable intersections.
P : Σ→ R is a measure means :

� P is non-negative;

� P(∅) = 0;

� For all countable families of disjoint sets (Ai : i ∈ N) in Σ,

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

The elements of Σ are called events and the elements of Ω are called elementary events. For an
event A, P(A) is called the probability of A.

During this course we will mostly consider finite probability spaces, those where Ω is finite
and Σ = 2Ω. In this case the probability measure P is determined by the value it takes on
elementary events. That is, given any function p : Ω → [0, 1] that satisfies

∑
ω∈Ω p(ω) = 1, the

function on Σ given by P(A) =
∑

ω∈A p(ω) is a probability measure.

In a finite probability space, the most basic example of a probability measure is the uniform
distribution on Ω, where

P(A) =
|A|
|Ω|

for all A ⊆ Ω.

One elementary fact that we will use often is the following, often referred to as the union
bound:

Lemma 1.1 (Union bound). For any countable family of events (Ai : i ∈ N) in Σ,

P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P(Ai)
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Proof. For each i ∈ N let us define

Bi = Ai \ (

i−1⋃
j=1

Aj).

Then Bi ⊆ Ai, and so P(Bi) ≤ P(Ai), and also
⋃∞
i=1Bi =

⋃∞
i=1Ai. Therefore, since the events

B1, B2, . . . , Bn are disjoint, by the countable additivity of P

P

( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

P(Bi) ≤
∞∑
i=1

P(Ai)

Definition. Two events A,B ∈ Σ are independent if

P(A ∩B) = P(A)P(B).

More generally, a set of events {A1, A2, . . . , An} is mutually independent if, for any subset of
indices I ⊆ [n],

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

It is important to note that the notion of mutual independence is stronger than simply
having pairwise independence of all the pairs Ai, Aj . Intuitively, the property of independence
of two events, A and B, should mean that knowledge about whether or not A occurs should not
influence the likelihood of B occurring. This intuition is made formal with the idea of conditional
probability.

Definition. Given two events A,B ∈ Σ such that P(B) 6= 0, we define the conditional probability
of A, given that B occurs, as

P(A|B) =
P(A ∩B)

P(B)
.

Note that, as expected, A and B are independent if and only if P(A|B) = P(A).

Definition. A random variable on a probability space (Ω,Σ,P) is a P-measurable function
X : Ω → E to some measurable space E. That is, E is a set together with a σ-algebra ΣE on
E such that for any measurable A ∈ ΣE

{ω ∈ Ω: X(ω) ∈ A} ∈ Σ.

Given a measurable set A ⊆ E the probability that the value X takes lies in A is P({ω ∈ Ω :
X(ω) ∈ A}) which we will write as P(X ∈ A). It will sometimes be convenient to think about
random variables not as functions from some probability space to a measurable space, but just
in terms of the distributions on the measurable space they determine.

What do we mean by a distribution? Well, for every measurable set A ∈ ΣE we can assign
it a measure P̂(A) = P(X ∈ A). It is not hard to check that the triple (E,ΣE , P̂) is then
a probability space. So, in fact, this is just another word for a notion we already have, that
of a probability measure on ΣE , and indeed for every probability space (Ω,Σ,P) the function
id : Ω→ Ω is a random variable whose distribution agrees with the measure P.
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However, we tend to make a philosophical distinction between probability spaces (Ω,Σ,P)
and the distribution of a random variable X. The former we tend to treat as merely sources of
randomness, so that we don’t care about the elements of the set Ω, whereas we quite often care
about the specific values that a random variable takes, and the probability that it takes those
values.

Given two random variables X and Y we write X ∼ Y if X and Y have the same distribution,
that is, if P(X ∈ A) = P(Y ∈ A) for every A ∈ ΣE .

A particularly common case is a real random variable when E = R and ΣE is the borel σ-
algebra on R. However in this course we will mostly be interested in discrete random variables,
that is random variables where the range of X is finite. Note that, in particular, this will be
true whenever (Ω,Σ,P) is a finite probability space.

Definition. The expectation of a real random variable X is

E(X) =

∫
Ω
X(ω) dP(ω).

In the case of a finite probability space this can be expressed more clearly as

E(X) =
∑
ω∈Ω

p(ω)X(ω).

The set of random variables forms an algebra over R with addition and multiplication defined
pointwise. For example the random variable X + Y is the function from Ω to R defined by
(X + Y )(ω) = X(ω) + Y (ω).

Lemma 1.2 (Linearity of expectation). For any two random variables X and Y

E(X + Y ) = E(X) + E(Y ).

Proof.

E(X + Y ) =

∫
Ω

(X + Y )(ω) dP(ω) =

∫
Ω
X(ω) + Y (ω) dP(ω)

=

∫
Ω
X(ω) dP(ω) +

∫
Ω
Y (ω) dP(ω) = E(X) + E(Y ).

So expectation is linear, however in general it is not multiplicative. Indeed E(XY ) can be
quite different to E(X)E(Y ), however if the two random variable are independent the two will
coincide.

Definition. Two random variables X,Y are independent if, for any two measurable sets A,B ⊆
R we have

P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B).

More generally, a set of random variables {X1, X2, . . . , Xn} is mutually independent if, for
any subset of indices I ⊆ [n] and any set of measurable sets {Ai ⊆ R : i ∈ I} we have

P (Xi ∈ Ai for all i ∈ I) =
∏
i∈I

P(Xi ∈ Ai).
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We note the following useful fact, although we will not need it in the course.

Lemma 1.3. For any two independent random variables, X and Y ,

E(XY ) = E(X)E(Y )

Suppose that X and Y are both random variables on the same probability space (Ω,Σ,P),
perhaps with different codomains EX and EY . We say that X determines Y if Y is a function
of X. That is, if there exists some function f : EX → EY such that for every ω ∈ Ω

Y (ω) = f(X(ω)).

We will also want to use at various times Jensen’s inequality, which can be neatly phrased
as a probabilistic statement.

Lemma 1.4. [Jensen’s inequality] Let X be a real random variable and let g : R→ R be convex.
Then

E(g(X)) ≥ g(E(X)).

Proof. Let L(x) = a + bx be the line tangent to g at the point E(X). Since g is convex, g lies
above the line L and hence g(x) ≥ L(x) for all x ∈ R. Hence

E(g(X)) ≥ E(L(X)) = E(a+ bX) = a+ bE(X) = LE(X) = g(E(X)).

Remark 1.5. Note that, by considering −g in the above theorem, we can conclude that if instead
g is concave, then

E(g(X)) ≤ g(E(X)).

We will also use throughout the notes the following notation for comparing growth rates of
functions, which it will be useful to be familiar with. Given two functions f, g : N → R we say
that:

� f = O(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≤ Cg(n);

� f = Ω(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≥ Cg(n);

� f = o(g) if for sufficiently large n, f(n) ≤ Cg(n), for any fixed C > 0;

� f = ω(g) if for sufficiently large n, f(n) ≥ Cg(n), for any fixed C > 0;
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2 Entropy

The idea of entropy originated in statistical mechanics. Broadly, given a thermodynamic system,
such as a gas or a liquid if we know some global properties of the system, e.g temperature, volume,
energy, there are many different microstates, that is configurations of the individual particles
within the system, which are consistent with these measurements.

As an example imagine flipping 1000 coins. We have a global measurement, the number
of heads, but for each particular value for this, there are many different configurations of the
specific states each of the 1000 coins landed in which achieve this number of heads.

Under a broad assumption that each of these microstates are equally likely, Boltzmann de-
fined entropy of the system to be kB log(# of microstates) where kB is some constant. Gibbs
generalized this to microstates with unequal probabilities and gave the formula

S = −kB
∑

pi log(pi),

where S is the entropy, pi is the probability of the ith microstates, and the sum ranges over all
the microstates. This reduces to Boltzmann’s formula when the pi are equal.

The second law of thermodynamics states that the entropy of an isolated system never de-
creases, and so such systems naturally ‘tend’ towards the state with maximum entropy, known
as thermodynamic equilibrium. This was an attempt to formalise the idea that there is a nat-
ural ‘direction’ to natural processes, for example to explain why heat is transferred from hotter
objects to cooler objects, rather than the other way round (which would not by itself contradict
the conservation of energy in a process).

In the 40s Shannon discovered that a similar function arose quite naturally in the study of
information theory, and at the suggestion of Von Neumann, called it entropy.

“You should call it entropy, for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name, so it already has a name. In the second
place, and more important, nobody knows what entropy really is, so in a debate you will always
have the advantage.” - John von Neumann

More recently the notion of entropy has found many unexpected applications in mathematics,
in particular in combinatorics, but also in other fields such as geometry and ergodic theory.

Given a discrete random variable X let us write p(x) for the probability P(X = x) for each
x in the range of X. We define the entropy of the random variable X to be

H(X) :=
∑
x

p(x) log

(
1

p(x)

)
.

Note that this quantity is always non-negative.

It might be helpful to think of entropy, at least heuristically, as a measure of the expected
amount of ‘surprise’ we have upon discovering the value of X. We then have the following
heuristic argument for why H(X) should be defined as above.

7



If we have an event A, such as the event that X = x for some x, the amount of ‘surprise’
we have at the event A happening should just be some function f(p) of p := P(A). There are a
number of reasonable conditions we should expect f to satisfy:

� f(1) = 0, since a certain event is no surprise;

� f should be decreasing, since rarer events are more surprising;

� f is continuous;

� f(pq) = f(p)+f(q), which can be motivated by considering independent events happening
with probability p and q;

� finally, for normalisation we may as well assume f(1/2) = 1.

It turns out that f(p) = log 1
p is the unique function satisfying these constraints. Then,

H(X) is the expected value, taken over the range of X, of the surprise of the event that X takes
each value, and so H(X) is the only ‘reasonable’ function representing the idea following these
heuristics.

Broadly, a key idea in the course will be to be consider a random variable X as a having a
product structure, in the sense that X is really some vector of random variables (X1, . . . , Xn).
Whilst X might represent some ‘global’ information, these coordinates Xi might be much sim-
pler, and represent some ‘local’ information.

For example, suppose we have a graph G and we consider a random variable X which chooses
a perfect matching from G uniformly at random. Formally, X takes values in 2E(G), that is
subsets of the edge set of G, which we may identify with the space {0, 1}E(G), where an edge
set is mapped to its characteristic vector. X then has a very natural product structure: for
each e ∈ E(G) we can consider the random variable Xe, which is given by the coordinate of X
corresponding to e. Each Xe has a very simple structure, it takes the value 0 with some fixed
probability and the value 1 with some fixed probability, but the relationship between different
coordinates can be very complex.

A motivating idea for the next section is that we will try to develop tools that allow us to
relate H(X) to the quantities H(Xi) when X = (X1, . . . , Xn).

However, note in the above example there is not a unique ‘product structure’ that we can
impose on this random variable X. Indeed instead we could consider the following: For each
v ∈ V (G) let us denote by Yv the random variable which is given by the neighbour of v in X.
Then the vector Y = (Yv : v ∈ V (G)) also in some way represents the same information as X.
For our purposes, we will care about the entropy of the random variables, and the following
lemma will show that, two random variables which both determine each other will have the
same entropy

Lemma 2.1. Let X and Y be discrete random variables such that X determines Y . Then
H(Y ) ≤ H(X).

Proof. Suppose that X takes values in X and Y takes values in Y. By definition there is
some function f : X → Y such that Y = f(X). Then, for every y ∈ Y we have that p(y) =
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∑
x : f(x)=y p(x) and p(x) ≤ p(f(x)). Hence

H(Y ) =
∑
y∈Y

p(y) log

(
1

p(y)

)

=
∑
y∈Y

∑
x : f(x)=y

p(x) log

(
1

p(y)

)

=
∑
x∈X

p(x) log

(
1

p(f(x))

)
≤
∑
x∈X

p(x) log

(
1

p(x)

)
= H(X).

Hence if X determines Y and X determines Y then H(X) = H(Y ). So, for example, since
every matching determines, and is determined by, the list of neighbours of each vertex in G, we
know that H(X) = H(Y ) in the above example.

A fundamental example of a random vector is the Bernoulli random variable X, which takes
two values, 0 and 1 with probability p and 1− p respectively, then

H(X) = p log

(
1

p

)
+ (1− p) log

(
1

1− p

)
,

and so as p→ 1 or 0, H(X)→ 0. Since this value will come up later in the course, we will write

h(p) := p log

(
1

p

)
+ (1− p) log

(
1

1− p

)
.

It is not hard to see that the entropy of this particular X is maximised when p = 1/2, when
H(X) = 1, and in fact in general we have that:

Lemma 2.2. Let X be a discrete random variable and let R be the range of X.

H(X) ≤ log (|R|).

with equality if X is uniformly distributed.

Proof. We will use the following form of Jensen’s inequality. Let f be concave on [a, b], λi ≥ 0
such that

∑n
i=1 λi = 1 and let x1, . . . xn ∈ [a, b]. Then if we consider a real random variable Y

taking the values xi with probability λi, we have by Lemma 1.4

n∑
i=1

λif(xi) = E(f(Y )) ≤ f(E(Y )) = f

(
n∑
i=1

λixi

)
.

We note that f(x) = log (x) is a concave function on (0,∞), which can be seen since its derivative
1
x is decreasing on (0,∞), and so

H(X) =
∑
x∈R

p(x) log

(
1

p(x)

)
≤ log

(∑
x∈R

p(x)

p(x)

)
= log (|R|).

Finally it is easy to see that if X is uniformly distributed then p(x) = 1
|R| for each x ∈ R and so

H(X) = log (|R|).
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This gives a useful connection between entropy and counting. We are going to define a whole
host of generalisations of the entropy function, and in order to try and give you some intuition
for such things, and give some working examples of calculating entropy, we’ll keep a motivating
example in mind as we go through these definitions.

Consider the probability space Ω given by a sequence of N fair coin flips for N very large,
and the random variable X : Ω → {0, 1}[N ] where Xi = 1 if the ith coin flip was heads and 0
if it was tails. For every subset A ⊂ [N ] we can consider the random variable XA given by the
restriction of X to just the coordinates in A. In this way we have a correspondence between
random variables and subsets.

Since XA is uniformly distributed on {0, 1}A, Lemma 2.2 tells us that H(X) = log |{0, 1}A| =
log 2|A| = |A|. So, in this setting there is a correspondence between the entropy of XA and the
cardinality of the set A.

Given two discrete random variables, X and Y , we define the joint entropy (X,Y ) to be

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
,

where, as before, p(x, y) := P(X = x, Y = y). Note that, if X and Y are independent then, by
definition p(x, y) = p(x)p(y) for all x ∈ X and y ∈ Y , and so

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
=
∑
x

∑
y

p(x)p(y) log

(
1

p(x)p(y)

)
=
∑
x

∑
y

p(x)p(y)

(
log

(
1

p(x)

)
+ log

(
1

p(y)

))
=
∑
x

p(x) log

(
1

p(x)

)∑
y

p(y) +
∑
y

p(y) log

(
1

p(y)

)∑
x

p(x)

=
∑
x

p(x) log

(
1

p(x)

)
+
∑
y

p(y) log

(
1

p(y)

)
= H(X) + H(Y )

However, in general that will not be the case.

So, in our example if we have two subsets A and B, what will the joint entropy of XA and
XB be? Well XA takes values in {0, 1}A and XB takes values in {0, 1}B, but given x ∈ {0, 1}A
and y ∈ {0, 1}B it’s not necessarily true that p(x, y) = p(x)p(y), that is, the random variables
XA and XB are not necessarily independent. Indeed, since XA and XB are restrictions of the
same random variable X, for every i ∈ A ∩B we have (XA)i = (XB)i.

So, what will the term p(x, y) look like? Well, for a fixed x ∈ {0, 1}A, if y disagrees with
x in a coordinate i ∈ A ∩ B, then p(x, y) is clearly 0. Otherwise, since A and B were both
uniformly distributed over their range, p(x, y) = 2|A∩B|−|A|−|B| and there are exactly 2|B|−|A∩B|
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such y ∈ {0, 1}B which agree with x on {0, 1}A∩B. Hence we can calculate

H(XA, XB) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
=
∑
x

2|B|−|A∩B| · 2|A∩B|−|A|−|B| log 2|A|+|B|−|A∩B|

= 2|A|+|B|−|A∩B| · 2|A∩B|−|A|−|B| log 2|A|+|B|−|A∩B|

= |A|+ |B| − |A ∩B| = |A ∪B|.

So, in this context the joint entropy corresponds to the cardinality of the union A ∪B.

We also define the conditional entropy of Y given X in the following way. Let us write, as
another shorthand, p(y|x) := P(Y = y|X = x), and similarly p(x|y). We define

H(Y |X) :=
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
=
∑
x

p(x)H(Y |X = x)

= Ex
(
H(Y |X = x)

)
.

Where the first equation is a definition, and the other equalities are merely different ways to
rewrite this quantity. Note the difference between H(Y |X = x), which is the entropy of the
random variable (Y |X = x), and H(Y |X), which is the expected value of the latter over all
possible values of x. In particular, (Y |X) is not a random variable.

Back to our example, given subsets A and B and considering H(XB|XA), what will p(y|x)
be? Well, as before, given a fixed x, this term is 0 unless x and y agree on {0, 1}A∩B, and if
they do agree on A∩B then it is clear that p(y|x) = 2−|B\A|. Also, for each x, there are exactly
2|B|−|A∩B| = 2|B\A| such y which agree with x on {0, 1}A∩B. Hence we can calculate

H(XB|XA) :=
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
=
∑
x

p(x)2|B\A|2−|B\A| log
(

2|B\A|
)

= 2|A|2−|A| log
(

2|B\A|
)

= |B \A|.

So, in this context the conditional entropy corresponds to the cardinality of the set difference
B \A.

We can think of the conditional entropy as being the expected surprise in learning the value
of Y , given that the value of X is known. We might expect, heuristically, that having extra
knowledge should only decrease how surprised we are, and indeed that turns out to be the case:

Lemma 2.3 (Dropping conditioning). Let X,Y and Z be discrete random variables. Then

H(Y |X) ≤ H(Y ).

Furthermore
H(Y |X,Z) ≤ H(Y |X)

with equality if X determines Z.
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Proof. We will just prove the first part of the lemma, the second part will be left as an exercise.
Noting that p(y)p(x|y) = p(x)p(y|x) = p(x, y), we see that

H(Y |X) =
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
=
∑
y

p(y)
∑
x

p(x|y) log

(
1

p(y|x)

)

≤
∑
y

p(y) log

(∑
x

p(x|y)

p(y|x)

)

=
∑
y

p(y) log

(∑
x

p(x)

p(y)

)

=
∑
y

p(y) log

(
1

p(y)

)
= H(Y ).

Where in the above we make repeated use of the fact that, if we sum the probabilities that a
random variable takes a specific value over its entire range,1 then the result is 1, and Jensen’s
inequality (See Lemma 2.2) in the third line.

Using our correspondence between the set world and the random variable world, we can now
use Lemma 2.3 to say something about sets. Indeed, we have that

|B \A| = H(XB|XA) ≤ H(XB) = |B|.

In a similar fashion, any identity or inequality about entropy will specialise to a combinatorial
identity or inequality about finite sets. The converse is not true, and we shall see some examples
of this later, but sometimes it can give intuition about what identities may hold. For example,
we know that |A∪B| = |A|+ |B \A|. Translating this back into the language of entropy would
give the statement H(XA, XB) = H(XA) + H(XB|XA), which we will see in fact holds for all
pairs of random variables.

Lemma 2.4 (Chain rule). Let X and Y be discrete random variables. Then

H(X,Y ) = H(X) + H(Y |X).
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Proof.

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
=
∑
x

∑
y

p(x, y) log

(
1

p(x)p(y|x)

)
=
∑
x

∑
y

p(x, y) log

(
1

p(x)

)
+
∑
x

∑
y

p(x, y) log

(
1

p(y|x)

)
=
∑
x

p(x) log

(
1

p(x)

)
+
∑
x

∑
y

p(x)p(y|x) log

(
1

p(y|x)

)
= H(X) +

∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
= H(X) + H(Y |X).

One can also define the joint entropy of a sequence of discrete random variablesX1, X2, . . . , Xn

in a similar way and by induction it follows that

H(X1, X2, . . . , Xn) = H(X1) + H(X2|X1) + . . .H(Xn|X1, X2, . . . , Xn−1).

We shall sometimes also refer to this as the chain rule. Note that, by Lemma 2.3 and Lemma
2.4 we have that

H(X1, X2, . . . , Xn) ≤
∑
i

H(Xi). (2.1)

This seemingly quite simple statement is really quite useful, since it allows us to reduce the
calculation of the entropy of a single random variable, to the calculation of many, hopefully
simpler, random variables. Often, using this we can turn quite ‘global’ calculations into ‘local’
ones which are much easier to deal with.

So far we have an analogue of set union and set difference, so a natural idea would be consider
the entropic function corresponding to intersection. Since |A ∩ B| = |A| + |B| − |A ∪ B| this
quantity should be represented by H(X)+H(Y )−H(X,Y ). We call this the mutual information
of X and Y and it is denoted by I(X;Y ). Note that, by Lemma 2.4

I(X;Y ) := H(X) + H(Y )−H(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

As the name suggests, we can think of this quantity of measuring the amount of information
that X and Y share, and indeed this should be the amount of information ‘left’ from H(X)
after we get rid of the information remaining in X once we know Y , H(X|Y ). From Lemma 2.3
if follows that I(X;Y ) ≥ 0, and in fact by analysing when we get equality in Jensen’s inequality
one can show that I(X;Y ) = 0 if and only if X and Y are independent. Hence, the mutual
information is in some way a measure of the dependence of the random variables X and Y .

The final definition we will make is the conditional mutual information of X and Y given Z,
which we write as I(X;Y |Z). The definition of this quantity is perhaps obvious given the name

I(X;Y |Z) := H(X|Z) + H(Y |Z)−H(X,Y |Z).

13



Naively, Lemma 2.3 and Lemma 2.4 again suggest that this quantity should be non-negative,
however strictly to deduce this we will need to prove a conditional version of Lemma 2.4, whose
proof we will leave as an exercise.

Lemma 2.5. Let X,Y and Z be discrete random variables. Then

H(X,Y |Z) = H(X|Z) + H(Y |X,Z).

Given Lemma 2.5 and Lemma 2.3 it follows that

I(X;Y |Z) := H(X|Z) + H(Y |Z)−H(X,Y |Z) = H(Y |Z)−H(Y |X,Z) ≥ 0.
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3 Information Theory

3.1 Secure Encryption

Suppose we have a set of messages M that we might wish to encrypt and a set of keys K that
we can use to encrypt these messages. That is, every pair m ∈ M and k ∈ K of a message and
a key can be used to generate some encrypted text c ∈ C, or ciphertext.

Normally we have some (pseudo)-random method of generating keys k ∈ K, which deter-
mines some random variable K on K. If we also think of the messages as coming from some,
independent, random variable M , we can think of an encryption scheme for M in a very broad
sense as being a pair of random variables K and C, representing the key and the encrypted text
such that K and C together determine M . This last condition is just saying that we can decrypt
the message given the key and the ciphertext.

A classical encryption scheme would consist of some deterministic function e : M×K → C
such that for each k ∈ K the function e(·, k) → C is injective, and then taking C = e(M,K).
Moreover, normally K is chosen to be uniform over K.

Our definition above is slightly more general, as it allows for additional randomness in the
generation of the ciphertext, and doesn’t require the key to be chosen uniformly.

What does it mean for an encryption scheme to be secure? We want that someone who
doesn’t know the key cannot infer any information about the message from the ciphertext. To
put this in terms of entropy, we want that there is no mutual information between C and M .
Recall that this is equivalent to saying that C and M are independent.

Definition (Perfectly secure encryption scheme). An encryption scheme K,C for M is perfectly
secure if I(M ;C) = 0.

There is an obvious example of a perfectly secure encryption scheme which is known as a
one-time pad. We may assume without loss of generality that the messages are long binary
strings, that is M = {0, 1}n. If we take the set of keys to also be K = {0, 1}n, and let K be
uniformly distributed independently of M , then we can consider the function e(m, k) = m + k
where addition is taken in Zn2 .

Theorem 3.1. The one time pad is perfectly secure.

Proof. It will be sufficient to show that M and C = M + K are independent. Explicitly, we
need to check that for any x, y ∈ {0, 1}n

P(M = x and C = y) = P(M = x)P(C = y).
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First we note that C is uniformly distributed on {0, 1}n, since for any x ∈ {0, 1}n

P(C = x) =
∑

(y,z) : y+z=x

P(M = y and K = z)

=
∑
y

P(M = y)P(K = x− y)

=
∑
y

P(M = y)2−n = 2−n,

where the second line follows since M and K are independent.

However, then

P(M = x and C = y) = P(M = x)P(C = y|M = x)

= P(M = x)P(K = y − x)

= P(M = x)2−n

= P(M = x)P(C = y).

It follows that I(M ;C) = 0.

However this clearly isn’t a very efficient method of encryption, since it requires the two
parties to share a key which is as large as the message itself. However Shannon showed that this
is essentially necessary for a secure encryption scheme, in the sense that, in an perfectly secure
encryption scheme the set of keys must contain as least as much information as the messages.

Theorem 3.2. If K,C is a perfectly secure encryption scheme for M then H(K) ≥ H(M).

Proof. Since K,C is a perfectly secure encryption scheme for M , by assumption I(M ;C) = 0.
Furthermore, since K and C together determine M it follows that H(M |K,C) = 0. This can
be seen for example from the chain rule since H(K,C,M) = H(K,C) (by the comment after
Lemma 2.1), and so by the chain rule we have

H(M |K,C) = H(K,C,M)−H(K,C) = 0.

Hence,

H(M) = I(M ;C)−H(C) + H(M,C)

= H(M,C)−H(C)

≤ H(M,C,K)−H(C)

= H(M,K|C)

= H(K|C) + H(M |K,C)

= H(K|C) ≤ H(K).

As a more concrete example, if both M and K are uniformly distributed then Theorem 3.2
says that

log |K| = H(K) ≥ H(M) = log |M|.
That is, |K| ≥ |M| and so we need at least as many different keys as we have messages.

16



3.2 Data Compression

3.2.1 Uniquely Decodable and Prefix-free Codes

Suppose we have a set of elements X , for example the alphabet of some language, and we wish
to store or transmit an element x ∈ X using a binary string. It is clear that we can represent
each element of x ∈ X by a unique binary string of length n = dlog |X |e and so we can transmit
an arbitrary element by sending at most n bits of information.

However if there is some distribution, given by a random variable X, on X in which some
elements are more likely to appear than others, then it might be that we can exploit this to find
an encoding whose length is shorter on average. That is, we might hope to encode more likely
values by shorter strings.

Given a set S let us write S∗ for the set of finite sequences of elements of S and given
(s1, s2, . . . , sm) = C ∈ S∗ let us write ||C|| = m for the length of the sequence. Formally,
given a random variable X on X , which we call a source, we wish to find an injective function
C : X → {0, 1}∗ which will minimize

E(||C(X)||).

We call such a function an encoding of X (or X). This isn’t a particularly interesting problem,
since it is relatively clear that greedily assigning the most likely elements of X to the shortest
strings will minimise the expected length.

However, more generally, we may want to transmit messages consisting of strings of elements
from X . It is clear that we can extend an encoding C : X → {0, 1}∗ to an encoding C∗ : X ∗ →
{0, 1}∗ in the obvious way by concatenation, however this might cause ambiguities when there
are distinct sequences of elements (x1, x2, . . . , xm) and (x′1, x

′
2, . . . , x

′
m) ∈ X ∗ such that

C(x1)|C(x2)| . . . |C(xm) = C(x′1)|C(x′2)| . . . |C(x′m).

Of course, it is possible to ‘solve’ this problem by adding an extra character to our encoding
that indicates separation between elements, but this requires the use of an extra character, and
also increases the length of the encoding of each message. There is however a different way to
approach this problem, we say an encoding C : X → {0, 1}∗ is uniquely decodable if the extension
C∗ of C via concatenation is injective. Again, a natural question to ask for a random variable
X supported on X is how small can E(||C(X)||) be for a uniquely decodable C.

There is perhaps an obvious condition which implies that C is uniquely decodable, which is
that C is prefix-free, that is, there is no x, x′ ∈ X such that C(x) is a prefix of C(x′). If C if
prefix free then given a message (x1, x2, . . . , xm) ∈ X ∗ we can recover this sequence from

C∗(x1, x2, . . . , xm) = C(x1)|C(x2)| . . . |C(xm)

by reading the string from left to right. Prefix-freeness guarantees that the first C ∈ {0, 1}∗
that is a prefix of this word is indeed C(x1), and so in a recursive manner we can recover the
message (x1, x2, . . . , xm).

This also highlights another benefit of prefix-free encodings, you can decode them sequentially
in this manner, and so given only a prefix of the encoded message you can still decode a prefix of
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the message. For a general encoding C you may have to know the entire coded message before
being able to recover any of the original message.

Since being prefix-free is a considerably stronger condition than being uniquely decodable,
we might expect that the ‘best’ prefix-free encoding for X is on average longer than the ‘best’
uniquely decodable encoding, and a natural question to ask would be how much worse? However,
it will in fact turn out that the two coincide, and are essentially given by the entropy of X.

Given a source X and an encoding C let us write

`C(X) := E(||C(X)||) =
∑
x∈X

P(X = x)||C(x)||,

and let C = {C(x) : x ∈ X} ⊆ {0, 1}∗ be the range of C.

As useful tool will be Kraft-McMillan inequality.

Lemma 3.3. [Kraft-McMillan inequality] If C is a uniquely decodable code with range C then∑
c∈C

1

2||c||
≤ 1.

Furthermore if {`x : x ∈ X} is a (multi)-set of numbers such that∑
x∈X

1

2`x
≤ 1

then there exists a prefix-free code C such that ||C(x)|| = `x for all x ∈ X .

Remark 3.4. Note that we proved this Theorem for prefix-free codes on the first example sheet.
The stronger result tells us that we if we can find a prefix-free encoding to a set of strings with
specified lengths, we can in fact find a uniquely decodable encoding to a set of strings of the same
length.

Proof. In fact, we showed on the example sheet that if∑
x∈X

1

2`x
≤ 1,

then there exists even a prefix-free code C such that ||C(x)|| = `x for all x ∈ X . The proof is
essentially to show that a greedy choice always works. Hence, it remains to show the forward
implication.

Suppose C is uniquely decodable and let us write

S :=
∑
c∈C

1

2||c||
.

The idea behind this proof is a variant of something sometimes known as the ‘tensor product
trick’. Let N be the length of the longest string in C, then, since there are at most 2` strings
of length `, it is clear that for every ` ∈ N the strings of length ` contribute at most 1 to the
sum S. Hence clearly S ≤ N , but we wish to show that S ≤ 1. What we will show is that the
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unique decodability of C implies that we can in fact get an inequality of the form Sk ≤ Nk for
every k, and by taking the limit as k →∞ we will recover the result.

So, why should this inequality hold? We can write

Sk =

(∑
c∈C

1

2|c|

)k
=

∑
c1,c2,...,ck∈C

1

2
∑k
i=1 ||ci||

.

Let us think about Ck, the set of all sequences (c1, c2, . . . , ck) of length k from C. Given such
a sequence we can consider the concatenation c1|c2| . . . |ck ∈ {0, 1}∗, and since C is uniquely
decodable the mapping (c1, c2, . . . , ck) 7→ c1|c2| . . . |ck is injective. Hence, since ||c1|c2| . . . |ck|| =∑k

i=1 ||ci||,

Sk =
∑

c1,c2,...,ck∈C

1

2
∑k
i=1 ||ci||

=
∑

(c1,c2,...,ck)∈Ck

1

2||c1|c2|...|ck||

≤ kN

where the last inequality holds again because the set of strings of length ` for any fixed ` give
a contribution of at most 1 to the sum, since the mapping (c1, c2, . . . , ck) 7→ c1|c2| . . . |ck is
injective, and furthermore all strings have length at most kN .

Using this inequality it is relatively simple to show the following bound on the average length
of an encoding, originally proved by Shannon.

Theorem 3.5. [Shannon] For any source X and uniquely decodable encoding C

H(X) ≤ `C(X)

and furthermore for any source X there exists a prefix-free C such that

`C(X) ≤ H(X) + 1.

Proof. By definition we have that

H(X)− `C(X) = −
∑
x∈X

p(x) log p(x)− E(||C(X)||)

= −
∑
x∈X

p(x) (log p(x) + ||C(x)||)

=
∑
x∈X

p(x) log

(
1

2||C(x)||p(x)

)

By Jensen’s inequality we can put the sum on the inside

H(X)− `C(X) ≤ log

(∑
x∈X

p(x)
1

2||C(x)||p(x)

)
= log

(∑
x∈X

1

2||C(x)||

)
= log

(∑
c∈C

1

2||c||

)
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and finally by the Lemma 3.3 we can conclude that

H(X)− `C(X) ≤ log 1 = 0.

For the upper bound let us define, for every x ∈ X

`x =

⌈
log

(
1

p(x)

)⌉
.

It follows that ∑
x∈X

1

2`x
≤
∑
x∈X

p(x) = 1.

Hence by Lemma 3.3 there exists a prefix-free code C such that ||C(x)|| = `x for all x ∈ X .
However this code now satisfies

`C(X) =
∑
x∈X

p(x)||C(x)||

=
∑
x∈X

p(x)`x

≤
∑
x∈X

p(x)

(
log

(
1

p(x)

)
+ 1

)
= H(X) +

∑
x∈X

p(x)

= H(X) + 1.

3.2.2 Huffman Codes

Given a source X Lemma 3.3 tell us that

min
C prefix-free

`C(X) = min
C uniquely decodable

`C(X)

and Theorem 3.5 gives us a way to construct a prefix-free code C with

`C(X) ≤ H(X) + 1 ≤ min
C prefix-free

`C(X) + 1.

However these codes in general will not be optimal. In turns out one can give an explicit descrip-
tion of an optimal code, which is called a Huffman code after David Huffman who discovered
them.

One way to view the construction is as follows: We will build a subgraph of the binary tree
with leaves corresponding to C. We start by taking |X | independent vertices, labelled with the
value p(x). In the first stage we take the two vertices with the smallest labels p(x) and p(x′)
and join them both to a new vertex which we label with p(x) + p(x)′ and consider it as their
parent. In a general step we consider all vertices in the forest with no parents, we choose the
two with the smallest labels `1 and `2 and we join them both to a new parent vertex with label
`1 + `2. This continues until the vertex set is connected.
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The resulting graph is clearly a subgraph of the binary tree with |X | leaves, and by arbitrarily
choosing a {0, 1} labelling of the pair of edges from each vertex to its children we can assign to
each leaf a string C(x) ∈ {0, 1}∗. Note that, by construction the code C is prefix-free.

3.3 Guessing From Partial Information

Suppose there is some random variable X whose value we wish to know, but we are only given
some partial information in the form of a random variable Y and we have to make a ‘guess’ of
the value of X based on Y . That is, we have some guessing function g which gives us a random
variable g(Y ) = X̂, and we are interested in ’how accurate’ our guess is.

For example the random variable X might be a message sent to us across a ‘noisy channel’,
where the message we receive is Y . We are interested in how likely our guess is to be correct,
that is, P(X 6= X̂) := pe.

It turns out that the entropy function gives us a lower bound on how good our guessing
function can be in terms of H(X|Y ).

Theorem 3.6. [Fano’s inequality] Let X and Y be discrete random variables taking values
in X and Y respectively,and let g : Y → X be any function. If we define X̂ = g(Y ) and
pe = P(X 6= X̂) as above then

h(pe) + pe log(|X | − 1) ≥ H(X|Y ).

In particular, since h(pe) ≤ 1

pe ≥
H(X|Y )− 1

log(|X | − 1)
.

Proof. Let us define a random variable S which takes the value 1 if X 6= X̂ and 0 if X = X̂.
By assumption P(S = 1) = pe and P(S = 0) = 1 − pe and so H(S) = h(pe). Now H(X|Y ) =
H(E,X|Y ) − H(E|X,Y ) but E is determined by X and Y , since X̂ is a function of Y . Hence
H(X|Y ) = H(E,X|Y )− 0 = H(E,X|Y ).

Now H(E,X|Y ) = H(E|Y ) +H(X|E, Y ) ≤ H(E) +H(X|E, Y ). However by the definition of
conditional entropy we can split H(X|E, Y ) into two parts

H(X|E, Y ) = P(E = 0)H(X|Y,E = 0) + P(E = 1)H(X|Y,E = 1)

= (1− pe)H(X|Y,E = 0) + peH(X|Y,E = 1).

However, if E = 0 then X = X̂ and so, conditioned on E = 0, X is determined by Y . Hence
the first term is 0, and since

H(X|Y,E = 1) = EyH(X|Y = y,E = 1)

we can bound the second term by pe log(|X | − 1) since if we fix y ∈ Y then (X|Y = y,E = 1)
can take any value in X except g(y). It follows that

H(X|Y ) ≤ H(E) + H(X|E, Y ) ≤ h(pe) + pe log(|X | − 1).
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3.4 Shannon’s Channel Coding Theorem

A channel is a way to model the transmission of some message. We have some set X of messages
which are to be transmitted and a set Y of possible outputs and the channel is modelled by
a conditional probability distribution pY |X . That is, for each x ∈ X we have a distribution
pY |X(·|x) on Y which is the distribution of the output of the channel when x is the input.

Two simple examples are the binary symmetric channel, where X = Y = {0, 1} and each
message has a ε chance of resulting in the wrong output, or the binary erasure channel where
X = {0, 1} and Y = {0, 1,⊥} and each message has (1−ε) chance of being transmitted correctly
and a ε chance of being ‘lost’, and outputting ⊥.

Given a particular channel pY |X we are interested in how much information we can reliably
transmit across the channel. In order to do this we have a source which we wish to transmit.
which we will imagine comes as a sequence (U1, . . . , Uk) of independent, uniform binary random
variable. In order to transmit this source over the channel we first have to encode it using some
encoding function e : {0, 1}k → X n for some n. Note that we are allowed to take n ≥ k, and
in this way we might hope to increase the accuracy of our message by sending a sequence with
some error-correcting properties, however this comes at the cost of sending more message over
the channel.

The encoded sequence (X1, . . . , Xn) = e(U1, . . . , Uk) is transmitted over the channel, with
output (Y1, . . . , Yn) and we then decode this sequence using some decoding function d : Yn →
{0, 1}k to get a sequence (Û1, . . . , Ûk). An encoding scheme for a source (U1, . . . , Uk) and a
channel pY |X is a pair (e, d) of an encoding and decoding function. We define the rate of an

encoding scheme to be R = k
n , the number of bits communicated per message sent over the

channel.

Finally we would like a way to measure how close our decoded sequence (Û1, . . . , Ûk) is to
the source (U1, . . . , Uk). For this purpose we define the error probability as

pe := P(There exists i with Ûi 6= Ui).

Given channel we say a rate R is achievable if for each source there exists an encoding scheme
with rate R such that pe → 0 as the length of the source tends to∞. The capactity of a channel
is the supremum over all achievable rates.

Theorem 3.7 (Shannon’s Channel Coding Theorem). For any channel pY |X the capacity of the
channel is equal to maxpX I(X;Y ).

Proof. Let C := maxpX I(X;Y ), we need to show two statements. Firstly if we have an arbitrary
ε > 0 then we can find an encoding scheme for each source with rate C − ε such that pe → 0
and secondly, again for an arbitrary ε > 0, the rate C + ε is not achievable.

Let us begin by showing the second. Suppose that we have an encoding scheme with rate R
and consider a source of length k. If the error probability is low, then we should expect that
Ûi is distributed very similarly to Ui for each i, and since Ûi is determined by Y[n], this would
imply that we can almost recreate U[k] from Y[n], and so their mutual information must be high.
We can make this assertion precise with Fano’s inequality.
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However, we have a Markov chain U[k] → X[n] → Y[n], and so as we will see on the example
sheet, the mutual information between U[k] and Y[n] is at most the mutual information between
X[n] and Y[n], which by assumption is at most nC. Our aim will be to show that if n is small
compared to k, this will contradict the bound given by Fano’s inequality.

So, let’s try to make this precise. By the chain rule

H(X[n], Y[n], U[k]) = H(X[n−1], Y[n−1], U[k]) + H(Xn|X[n−1], Y[n−1], U[k]) + H(Yn|X[n], Y[n−1], U[k]).

However, Xn is determined by U[k], and hence the middle term is 0, and Yn is independent of
(X[n−1], Y[n−1], U[k]) conditioned on Xn and hence

H(X[n], Y[n], U[k]) = H(X[n−1], Y[n−1], U[k]) + H(Yn|Xn).

It follows by induction that H(X[n], Y[n], U[k]) = H(U[k]) +
∑n

i=1 H(Yi|Xi). However, again
since X[n] is determined by U[k], H(X[n], Y[n], U[k]) = H(Y[n], U[k]) and so

H(Y[n], U[k]) = H(U[k]) +

n∑
i=1

H(Yi|Xi).

Therefore

I(U[k];Y[n]) = H(Y[n])−
n∑
i=1

H(Yi|Xi) ≤
n∑
i=1

(H(Yi)− (Yi|Xi)) =

n∑
i=1

I(Xi;Yi) ≤ n.C

Hence, since the Uis are independent and uniform,

H(U[k]|Y[n]) = H(U[k])− I(U[k];Y[n]) ≥ k − nC

However, if we consider Fano’s inequality (Theorem 3.6), applied to the random variables
U[k], Y[n] and the decoding function d : Y → {0, 1}k then we see that

pe ≥
H(U[k]|Y[n])

k − 1
≥ k − nC

k
= 1− C

R

Hence, if R > C + ε, then it follows that pe is bounded away from 0.

For the converse, suppose we are given an arbitrary ε > 0, we wish to find an encoding
scheme with rate R = C−ε. We will show using the probabilistic method that such an encoding
scheme must exist.

The key idea here is that of ε-typical sequences. Suppose we have a random variable X taking
values in X . Given n ∈ N and (x1, . . . , xn) ∈ X n let us write

p(x1, . . . , xn) =
n∏
i=1

P(Xi = xi)

where X1, . . . , Xn are independent and identically distributed as X. Suppose we sample points
in X n according to the product distribution, what does a typical point look like?
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Well, for each x ∈ X we expect there to be np(x) many xi = x. This means that a typical
point (x1, . . . , xn) ∈ X n should have probability about

p(x1, . . . , xn) =
∏
x∈X

p(x)np(x)

and so the information theoretic content of this point, that is the contribution to the entropy
H(X[n]) will be

− log

(
1

p(x1, . . . , xn)

)
= − log

(
1∏

x∈X p(x)np(x)

)
= n

∑
x∈X

p(x) log

(
1

p(x)

)
= nH(X).

Note that H(X[n]) = nH(X), and so, since the entropy is just the average over points y in

the range of log 1
p(y) , these points contribute approximately the correct amount to this average.

Rearranging the above, we could equivalently say

p(x1, . . . , xn) = 2−nH(X).

We say a sequence (x1, . . . , xn) ∈ X n is ε-typical if

2−n(H(X)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−ε).

Let us denote the set of ε-typical sequences in X n by Anε (X).

Let us note some properties of Anε (X)

� If (x1, . . . , xn) ∈ Anε (X) then H(X)− ε ≤ − 1
n log(p(x1, . . . , xn)) ≤ H(X) + ε;

� p(Anε (X)) > 1− o(n);

� |Anε (X)| ≤ 2nH(X)+ε;

� |Anε (X)| ≥ (1− o(n))2nH(X)−ε.

The first is just a restatement of the definition and the second follows from the law of large
numbers. More precisely the (weak) law of large numbers says that if X is a real random variable
with mean µ and X1, X2, . . . , Xn are independently distributed as X then Xn = 1

n

∑n
i=1Xi → µ

in probability. That is, P(|Xn − µ| > ε) → 0 as n → ∞ for any fixed ε > 0. To see why this
implies the second consider the random variable given by Y = 1

p(X) . We have that E(Y ) =

H(X) by definition and if X1, . . . , Xn are independently distributed as X then Yi = 1
p(Xi)

are
independently distributed as Y and

P((X1, . . . , Xn) 6∈ Anε (X)) = P
(
| − 1

n
log(p(X1, . . . , Xn))−H(X)| > ε

)
= P

(
| − 1

n

n∑
i=1

log(p(Xi))−H(X)| > ε

)

= P

(
| 1
n

n∑
i=1

Yi − E(Y )| > ε

)
→ 0.
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For the third we note that

1 ≥ p(Anε (X)) =
∑

(x1,...,xn)∈Anε (X)

p(x1, . . . , xn) ≥ |Anε (X)|2−n(H(X)+ε),

from which the claim follows. Similarly again by the law of large numbers we may take n large
enough that

1− ε ≤ p(Anε (X)) =
∑

(x1,...,xn)∈Anε (X)

p(x1, . . . , xn) ≤ |Anε (X)|2−n(H(X)−ε).

Note that typical sequences are not in general the most likely ones! For example if X is
a biased binary variable, say with success probability 2/3 then the most likely sequence is
(1, 1, . . . , 1), but this is far from typical. In fact a typical sequence will have roughly 2/3rds of
it’s entries equal to 1.

Similarly given X as above and Y taking values in Y we can define ε-jointly-typical sequences
for X and Y is a sequence (x1, . . . , xn, y1, . . . , yn) such that

� 2−n(H(X)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−ε);

� 2−n(H(Y )+ε) ≤ p(y1, . . . , yn) ≤ 2−n(H(Y )−ε);

� 2−n(H(X,Y )+ε) ≤ p(x1, . . . , xn, y1, . . . , yn) ≤ 2−n(H(X,Y )−ε);

where p(x1, . . . , xn, y1, . . . , yn) =
∏n
i=1 P((Xi, Yi) = (xi, yi)) where each (Xi, Yi) are indepen-

dent and distributed as the joint distribution of (X,Y ). We denote the set of ε-jointly-typical
sequences in (X n,Yn) as Anε (X,Y ).

Let us note some properties of Anε (X,Y )

� If (x1, . . . , xn, y1, . . . , yn) ∈ Anε (X,Y ) then

– H(X)− ε ≤ − 1
n log(p(x1, . . . , xn)) ≤ H(X) + ε;

– H(Y )− ε ≤ − 1
n log(p(y1, . . . , yn)) ≤ H(Y ) + ε

– H(X,Y )− ε ≤ − 1
n log(p(x1, . . . , xn, y1, . . . , yn)) ≤ H(X,Y ) + ε

� p(Anε (X,Y )) > 1− o(n) for n sufficiently large;

� |Anε (X,Y )| ≤ 2nH(X,Y )+ε;

� |Anε (X,Y )| ≥ (1− o(n))2nH(X,Y )−ε for n sufficiently large.

Finally, we will need the following lemma, whose proof we sketch

Lemma 3.8. Let (X̂i, Ŷi) be independent and distributed with pX̂i,Ŷi = pX ·pY , then for all ε > 0
there is an n0 such that for all n > n0

(1− o(n))2−n(I(X;Y )+3ε) ≤ P((X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn) ∈ Anε (X,Y )) ≤ 2−n(I(X;Y )−3ε)
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Proof. Well P((X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn) ∈ Anε (X,Y )) is just the sum over all ε-jointly-typical se-
quences (x1, . . . , xn, y1, . . . , yn) of the probability that (X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn) = (x1, . . . , xn, y1, . . . , yn),
and there are approximately 2nH(X,Y ) many such sequences.

However, since the X̂i and the Ŷi are independent, this is just the product of the probabilities
that (X̂1, . . . , X̂n) = (x1, . . . , xn) and (Ŷ1, . . . , Ŷn)) = (y1, . . . , yn). However, since X̂i ∼ X
and Ŷi ∼ Y it follows from the fact that (x1, . . . , xn, y1, . . . , yn) is ε-jointly-typical that these
probabilities are approximately 2−nH(X) and 2−nH(Y ) respectively. That is

P((X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn) ≈
∑

(x1,...,xn,y1,...,yn)∈Anε (X,Y )

2−nH(X)2−nH(Y )

≈ 2nH(X,Y )2−nH(X)2−nH(Y )

= 2−nI(X;Y ).

So, given a channel, let p = pX be the distribution on X optimising I(X;Y ), recall that we
wish to show that the rate I(X;Y ) − 4ε is achievable, so let us pick sufficiently large k and n
with I(X;Y )− 4ε ≤ R = k

n < I(X;Y )− 3ε.

We pick our encoding function e : {0, 1}k → X n by choosing the image of each s ∈ {0, 1}k at
random from X n with distribution given by the product distribution of p. That is, for every s
individually and every (x1, . . . , xn) the probability that e(s) = (x1, . . . , xn) is

∏
i p(xi).

We then define a decoding function as follow. Given output (y1, . . . , yn) we look at all
the sequences (x1, . . . , xn, y1, . . . , yn) where (x1, . . . , xn) = e(s) for some s ∈ {0, 1}k. Now, if
e(s) = (x1, . . . , xn) were the input that resulted in the output (y1, . . . , yk), since each pair (xi, yi)
was chosen according to the distribution (X,Y ) and so we should expect this sequence to be ε-
jointly-typical with very high probability, so a sensible decoding function would map (y1, . . . , yk)
to s. Of course, there might be no suitable s, or there might be more than one of them, but we
shall see that this happens so rarely for it not to be a problem.

So our decoding function d be

d(y1, . . . , yn) =

{
s if (e(s), y1, . . . , yn) ∈ Anε (X,Y ) and (e(s′), y1, . . . , yn) 6∈ Anε (X,Y ) for all s 6= s′ ∈ {0, 1}k

error otherwise

So, we have picked a random encoding function e and that determines our decoding function d.
We would like to say that, with high probability, (e, d) show that the desired rate is achievable.
That is, since the probability of error pe is now a function of the encoding function e, we would
like to say that it is likely that for a randomly chosen e the error probability is small. So, let us
try and estimate the expected probability of error E(pe(e)). If we can show this tends to 0 with
n then by the first moment method we know there is some function e for which this holds.

Since the source is uniform, for a given e we just need to calculate the expected probability
that we transmit a particular string s correctly. Furthermore, since we chose the values of e
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at random according to p independently for each s ∈ {0, 1}k we want to estimate the following
quantity:

Given a family of random variables (X1(s′), . . . , Xn(s′)) for all s′ ∈ {0, 1}k each independently
distributed as X[n] and a random variable (Y1(s), . . . , Yn(s)) where each Yi(s) is distributed as
(Y |X = Xi(s)) (and independently of the other Xi(s

′)) we wish to bound from above the
probability that one of our two bad events occur. That is either,

� (X1(s), . . . , Xn(s), Y1(s), . . . , Yn(s)) 6∈ Anε (X,Y ), or

� (X1(s′), . . . , Xn(s′), Y1(s), . . . , Yn(s)) ∈ Anε (X,Y ) for all s 6= s′ ∈ {0, 1}k.

By the union bound this is at most the sum of the probabilities. Hence

E(pe(e)) ≤ P ((X1(s), . . . , Xn(s), Y1(s), . . . , Yn(s)) 6∈ Anε (X,Y ))

+
∑
s′ 6=s

P
(
(X1(s′), . . . , Xn(s′), Y1(s), . . . , Yn(s)) ∈ Anε (X,Y )

)

The first term can clearly be bounded above by the definition of ε-jointly-typical sequences.
However, since the values of e were chosen independently, (Y1(s), . . . , Yn(s)) is independent of
(X1(s′), . . . , Xn(s′)) for all s 6= s′. Hence Lemma 3.8 gives an upper bound for the probability
of the terms in the sum. Putting this all together we get

E(pe(e)) ≤ o(n) +
∑
s′ 6=s

2−n(I(X;Y )−3ε)

= o(n) + 2k−12−n(I(X;Y )−3ε)

≤ o(n) + 2nR2−n(I(X;Y )−3ε)

= o(n) + 2−n(I(X;Y )−R−3ε)

Where we used that k−1 ≤ k = nR. However since R < I(X;Y )−3ε it follows that the second
term also tends to 0 with n.
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4 Combinatorial Applications

4.1 Brégman’s Theorem

The permanent of an n× n matrix A is

perm(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

where Sn is the set of permutations of [n]. Note that this is very close to the definition of det(A),
only with the factor of (−1)sgn(σ) removed. Given a 0/1 matrix A we should expect that we
can bound the permanent in terms of the number of non-zero entries of A in some way. In 1963
Minc gave a very natural conjecture for a bound given the row sums.

Conjecture 4.1 (Minc’s Conjecture). Let A be an n × n 0/1 matrix such that the sum of the
entries of the ith row is ri. Then

perm(A) ≤
n∏
i=1

(ri!)
1
ri .

It turns out this conjecture can be very easily transformed into an equivalent conjecture
about graphs. There is a natural correspondence between n × n 0/1 matrices and bipartite
graphs with partition classes of size n. Given such a matrix A we can consider a graph G on
vertex set (V,W ) where V = {v1, . . . , vn} and W = {w1, . . . , wn} with an edge between vi and
wj if and only if aij = 1.

Now, a permutation σ gives a non-zero contribution to perm(A) if and only if aiσ(i) = 1 for
all i ∈ [n], that is, if and only if (vi, wσ(i)) is an edge for every i ∈ [n]. However, since σ is
injective, {(vi, wσ(i)) : i ∈ [n]} gives a perfect matching of G. Conversely, any perfect matching
M of G determines a permutation σ of [n] given by σ(i) = j such that (vi, wj) ∈ M , and the
contribution of this permutation to perm(A) is non-zero. Putting this together we see that if
we write Φ(G) for the set of perfect matchings of G and φ(G) = |Φ(G)| then

perm(A) = φ(G).

Since the row sums of A are precisely the degrees of vertices in V , an upper bound on the
permament of A in terms of the row sums is equivalent to an upper bound on the number of
perfect matchings of G in terms of the degrees of vertices in one partition class. Minc’s conjecture
was proved by Brégman’s, and so is now known as Brégman’s Theorem, but we will give a proof
using entropy methods due to Radhakrishnan.

Theorem 4.2 (Brégman’s Theorem). Let G be a bipartite graph on vertex classes A and B
such that |A| = |B| = n. Then

φ(G) ≤
∏
v∈A

(d(v)!)
1

d(v) .

Proof. Let M be a perfect matching of G chosen uniformly at random from Φ(G). For con-
venience we will associate A with the set [n] in the natural way, and denote by di the de-
gree of the vertex i. For each i ∈ [n] let Xi be the neighbour of i in M and we identify
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M with X = (X1, X2, . . . , Xn). More precisely, since M determines and is determined by
(X1, X2, . . . , Xn) it follows that H(M) = H(X).

Since M is unifromly distributed over φ(G) possibilities we have that H(M) = H(X) =
log (φ(G)). Hence if we can bound H(X) from above, we can also bound φ(G). Note that to get
the stated bound we would need to show that

H(X) ≤
n∑
i=1

log (di!)

di
.

A naive first approach might be the use the sub-additivity of entropy to say

H(X) ≤
n∑
i=1

H(Xi),

and since there are at most di possibilities for the random variable Xi we have that

H(X) ≤
n∑
i=1

H(Xi) ≤
∑
v∈A

log (di).

However, by Stirling’s approximation, log (di!)/di ∼ log (di/e), and so this bound is not enough.
However perhaps we can improve this bound by using the chain rule, since we have

H(X) =
n∑
i=1

H(Xi|X1, X2, . . . Xi−1).

We can think of this as revealing the matching one edge at a time, and working out the remaining
entropy at each step given what we know. Now instead of just using the naive bound for each
Xi we can hopefully take into account the fact that, if we already know X1, , X2, . . . Xi−1 this
may reduce the number of possibilities for Xi, since some of the vertices 1, 2, . . . , i − 1 may be
matched to neighbours of i in M , reducing the range of Xi.

However, since the matching M was random and the ordering of A were arbitrary, we don’t
know how many neighbours of i have already been used in M by vertices j < i. However, given
any permutation σ of [n] we can apply the chain rule with respect to the ordering given by σ to
see

H(X) =

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1)).

For each matching M there are some orderings that will give a significant improvement on the
bound above, so if we average over all possible choices of σ

H(X) ≤ 1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1)),

we might hope to get a reasonable improvement in our bound.

For each i ∈ [n] and permutation σ let us write Jσ,i = {k : σ(k) < σ(i)} ⊆ [n] \ {i}. Each
term in the sum above is of the form H(Xi|XJσ,i). So we can re-write the sum as
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H(X) ≤ 1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1))

=
1

n!

n∑
i=1

∑
σ

H(Xi|XJσ,i)

For each of these terms, if we think about calculating the sequentially, we’ve reduced the
range of Xi by how many of the previously exposed Xj lie in N(i), the neighbourhood of i. For
each fixed value of XJσ,i , which corresponds to some sequence of |Jσ,i| many neighbours of i, say
C, the entropy of Xi conditioned on XJσ,i = C can be bounded above by log(|N(i) \ C|). So,
let us denote by Nσ(i) = N(i) \ {Xj : j ∈ Jσ,i} the vertices in the neighbourhood of i without
those already chosen by some Xj .

It follows that, for any fixed σ and i we can calculate as follows, where C ranges over sequences
of vertices in N(i) of length |Jσ,i|

H(Xi|XJσ,i) =
∑
C

P(XJσ,i = C)H(Xi|XJσ,i = C)

≤
di∑
j=1

P(|Nσ(i)| = j) log j

Where we used the definition of conditional entropy, and then Lemma 2.2. However, since
we’re picking a random matching, it doesn’t seem like we have any control over this improvement,
since we don’t know how much this will reduce the range of Xi.

However, for any fixed matching M , if we pick a random permutation σ, we claim that the
size of |Nσ(i)| is in fact uniformly distributed between 1 and di. Indeed, for a given matching we
only care about the order in which we pick i and the vertices matched in M to the neighbours
of i. Since i is equally likely to be chosen in any position in this list, the claim follows. In
other words, for a fixed matching M , the proportion of σ such that |Nσ(i)| = k is 1

di
for each

1 ≤ k ≤ di.

Since this is true separately for each particular matching, then it is also true when we pick a
random matching. So, even though we can’t bound any of the terms P(|Nσ(i)| = j) for a fixed
σ, we can bound their average.

That is to say, if we pick M and σ both uniformly at random then

Pσ,M (|Nσ(i)| = j) = 1/di

and hence, by definition
1

n!

∑
σ

P(|Nσ(i)| = j) =
1

di
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Hence,

H(X) =
1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1))

=
n∑
i=1

1

n!

∑
σ

H(Xi|XJσ,i)

≤
n∑
i=1

1

n!

∑
σ

di∑
j=1

P(|Nσ(i)| = j) log (j)

=
n∑
i=1

di∑
j=1

(∑
σ

1

n!
P(|Nσ(i)| = j)

)
log (j)

=

n∑
i=1

di∑
j=1

log j

di
=

n∑
i=1

log (di!)

di

giving the bound as claimed.

Note that this bound is tight. If we take G to be n
d copies of Kd,d then we have that d(v) = d

for all v ∈ A and every matching consists of picking one from the d! possible matchings on each
Kd,d. Therefore.

φ(G) =

n
d∏
i=1

d! =
∏
v∈A

(d(v)!)
1

d(v) .

A natural question to ask is what happens for a non-bipartite G? It turns out a similar
bound can be given, and as we will see in the examples sheet, it can actually be derived in a
clever way from Brégman’s Theorem.

Theorem 4.3. Let G = (V,E) be a graph with |V | = 2n. Then

φ(G) ≤
∏
v∈V

(d(v)!)
1

2d(v) .

4.2 Sidorenko’s Conjecture

4.2.1 Coupling

One commonly studied random variable, that we will be interested in in this section, is that of
a random graph.

Definition. The random graph G(n, p) is a random variable taking values in the set

{G : G a graph with |G| = n},

where the probability of each graph G with m edges is

p(G) = pm(1− p)(
n
2)−m
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We note that, this corresponds to the usual notion of picking a random graph by including
every potential edge independently with probability p. If we take p = 1/2 it is not hard to
see that this random variable is uniformly distributed on all graphs with n vertices, and so
statements about G(n, 1/2) can be though of as statements about the ‘average’ graph.

For the next section we will need to use a tool from probability theory that allows us to relate
two unrelated random variables by considering them both as marginal distributions of a pair of
random variables living in the same space. As a simple example, consider two random variables
X ∼ G(n, p) and Y ∼ G(n, q) where p < q. It seems obvious that for increasing properties P
of graphs, such as being connected, P(X has property P) < P(Y has property P), but showing
this explicitly is cumbersome.

However we could consider a different probability space, Ω = [0, 1](
n
2) together with the

obvious probability measure. Let’s define two random variables X ′ and Y ′ as follows:

Let’s order the edges of Kn as {e1, e2, . . . , e(n2)
} and let X ′(ω) be the graph where ei ∈

E(X ′(ω)) if and only if ωi ≤ p. Similarly let Y ′(ω) be the graph where ei ∈ E(Y ′(ω)) if and
only if ωi ≤ q.

Now, it’s relatively easy to show that X ′ ∼ X, which is to say that X ′ takes the same values
with the same probabilities as X, and also Y ′ ∼ Y , however, the two random variables X ′ and
Y ′ are now closely related. Indeed, for any ω ∈ Ω it is easy to see that X ′(ω) ⊆ Y ′(ω). In
particular, for any increasing property P of graphs if X ′(ω) has property P than so does Y ′(ω).
Hence

P(X has property P) = P(X ′ has property P) < P(Y ′ has property P) = P(Y has property P).

For our purposes we will want to consider a slightly more general situation. The intuition will
be that there is a certain part of X and Y which ‘looks the same’ and we will want a coupling
which agrees on this part.

Suppose we have two discrete random variables X1 and X2 taking values in X1 and X2 and
a third random variable X3 taking values in X3 together with maps ψi : Xi → X3 for i = 1, 2
such that ψi(Xi) = X3 for i = 1, 2.

Let Y = {(x1, x2) ∈ X1 × X2 : ψ1(x1) = ψ2(x2)}. A random variable Y = (Y1, Y2) taking
values in Y is a coupling of X1 and X2 over X3 if it’s marginal distributions in the first and
second coordinate are X1 and X2 respectively. In this situation there is an ‘obvious’ choice for
Y , namely

P(Y = (x1, x2)) =
P(X1 = x1)P(X2 = x2)

P(X3 = ψ1(x1) = ψ2(x2))
.

We call this the conditionally independent coupling of X1 and X2 over X3. Note that the
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marginal distribution of the first coordinate here is indeed X1 since for any x1 ∈ X1

P(Y1 = x1) =
∑

x2 : (x1,x2)∈Y

P(Y = (x1, x2))

=
∑

x2 : (x1,x2)∈Y

P(X1 = x1)P(X2 = x2)

P(X3 = ψ1(x1) = ψ2(x2))

=
P(X1 = x1)

P(X3 = ψ1(x1) = ψ2(x2))

∑
x2 : (x1,x2)∈Y

P(X2 = x2)

=
P(X1 = x1)

P(X3 = ψ1(x1) = ψ2(x2))

∑
x2 : ψ2(x2)=ψ1(x1)

P(X2 = x2)

=
P(X1 = x1)

P(X3 = ψ1(x1) = ψ2(x2))
P(X3 = ψ2(x2))

= P(X1 = x1).

A similar calculation shows that the marginal distribution of the second coordinate is X2.

Intuitively, Y is the set of all possible values of the pair (X1, X2) which agree on the parts of
X1 and X2 corresponding to X3. The conditionally independent coupling is then in some sense
the ‘most independent’ coupling. Conditioned on a particular value x3 for X3, Y can only take
values in {(x1, x2) : ψ1(x1) = ψ2(x2) = x3} and in the conditionally independent coupling the
value of the first and second coordinate will be independent, conditioned on the value of X3.

One particular useful feature of the conditionally independent coupling is that it maximises
the entropy. That is, if X1, X2 and X3 are as above, Y is the conditionally independent coupling
of X1 and X2 over X3, and Z is any other coupling then

H(Z) ≤ H(Y ). (4.1)

To see this we will need the following small lemma:

Lemma 4.4. Let U, V and W be discrete random variables and suppose that U and V are
conditionally independent given W . Then

H(U |V,W ) = H(U |W ).

Proof. Since U and V are conditionally independent given W it follows that H(U, V |W ) =
H(U |W ) + H(V |W ). However by Lemma 2.5

H(U |W ) + H(V |W ) = H(U, V |W ) = H(U |V,W ) + H(V |W )

from which the claim follows.

Then, given X1, X2, X3, Y and Z as above let us note the following facts:

� Yi ∼ Zi ∼ Xi for i = 1, 2;

� ψ1(Y1) = ψ2(Y2) ∼ ψ1(Z1) = ψ2(Z2) ∼ X3;
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� Y1 and Y2 are mutually independent given ψ1(Y1).

So we can calculate

H(Z) = H(Z1, Z2, ψ1(Z1))

= H(Z1, Z2|ψ1(Z1)) + H(ψ1(Z1))

= H(Z1|Z2, ψ1(Z1)) + H(Z2|ψ1(Z1)) + H(X3)

≤ H(Z1|ψ1(Z1)) + H(Z2|ψ1(Z1)) + H(X3)

= H(Z1|ψ1(Z1)) + H(Z2|ψ2(Z2)) + H(X3)

= H(Y1|ψ1(Y1)) + H(Y2|ψ2(Y2)) + H(ψ1(Y1))

= H(Y1|Y2, ψ1(Y1)) + H(Y2|ψ1(Y1)) + H(ψ1(Y1))

= H(Y1, Y2, ψ1(Y1)) = H(Y ).

4.2.2 Sidorenko’s Conjecture

A graph homomorphism f : H → G is a map which preserves adjacency. Given two graphs G
and H we can define the homomorphism density t(H,G) as the proportion of all maps from
V (H) to V (G) which are homomorphisms, or equivalently, the probability that a random such
map will be a homomorphism. Explicitly if we write hom(H,G) for the set of homomorphisms
from H to G then

t(H,G) =
|hom(H,G)|
v(G)v(H)

.

For example, if we take H = K2 to be a single edge then

t(K2, G) =
2e(G)

v(G)2
.

Conjecture 4.5 (Sidorenko’s Conjecture). For every bipartite graph H and every graph G

t(H,G) ≥ t(K2, G)e(H).

Note that, if we take G to be a random graph G(n, p) with p = t(K2, G) then t(K2, G)e(H) =
pe(H) is just the probability that a particular copy of H is a subgraph of G(n, p). Taking the sum
over all possible copies of H (and noting that almost all maps from v(H) to v(G) are injective
as long as n is large enough), it follows that

E(t(H,G)) =
E(|hom(H,G)|)

v(G)v(H)
=

(1 + o(1))v(G)v(H)pe(H)

v(G)v(H)
= (1 + o(1))pe(H).

and so by the first moment method, this bound is asymptotically tight.

This conjecture is around 25 years old, and there has been much partial progress towards it,
showing that it holds for many classes of bipartite graphs. Quite recently some progress was
made independently by Colon, Kim, Lee and Lee, and Szegedy using entropy methods. Let’s
consider how we might used entropy to attack this problem.

Suppose we take some random variable X which takes values in hom(H,G). By Lemma 2.2
we know that log |hom(H,G)| ≥ H(X) for any such X and so

log t(H,G) ≥ H(X)− v(H) log v(G).
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Hence, to show that log(t(H,G)) ≥ log(t(K2, G)e(H)), it would be sufficient to find an X such
that

H(X) ≥ e(H) log t(K2, G) + v(H) log v(G) = e(H) log 2e(G) + (v(H)− 2e(H)) log v(G).

We can re-write this in a slightly nicer form by letting V be a vertex chosen uniformly at

random from V (G) and E be an oriented edge chosen uniformly at random from
−→
E (G), or in

other words V is uniform on hom(K1, G) and E is uniform of hom(K2, G). Then H(V ) = log v(G)
and H(E) = log 2e(G) and so we want to find an X such that

H(X) ≥ e(H)H(E) + (v(H)− 2e(H))H(V )

Since X gives a distribution on hom(H,G), for every subgraph H ′ ⊆ H we can consider the
marginal distribution of H ′ in X, that is, the induced distribution coming from the projection

hom(H,G) → hom(H ′, G). In particular, every oriented edge (u, v) ∈
−→
E (H) has a marginal

distribution in X (taking values in hom(K2, G)), which tells us for each oriented edge (x, y) ∈
−→
E (G) how likely it is that in a random homomorphism chosen by X, (u, v) is mapped to (x, y).
A natural property to ask of X is that each of these marginal distributions are uniform on
hom(K2, G).

Definition. A witness variable for a bipartite graphH is a family of random variables (X(G) : G a graph)
such that for every G:

1. X(G) is a random variable taking values in hom(H,G);

2. For every edge (u, v) ∈
−→
E (H) the marginal distribution of (u, v) in X is uniform.

3. H(X(G)) ≥ e(H)H(E(G)) + (v(H)− 2e(H))H(V (G)).

Where, in a slight abuse of notation, we have written V (G) and E(G) for the uniform random

variables on V (G) and
−→
E (G). In what follows we’ll normally be talking about a fixed G, and

so we’ll just write X,V and E for these random variables. The discussion above shows that
the existence of a witness variable for H is a sufficient condition for H to satisfy Sidorenko’s
conejcture.

Theorem 4.6. If H has a witness variable, then H satisfies Sidorenko’s conjecture.

So far perhaps we haven’t really done very much, in fact we’ve made things slightly harder
for ourselves by asking that X satisfy this second condition. However, the useful thing about
this reformulation is that we will be able to build witness variables for graphs H by combining
witness variables for smaller graphs. This will allow us to inductively show that classes of graphs
built using certain graph operations will satisfy Sidorenko’s conjecture. However to get started
we will need a base case, for which we can use a single edge.

Lemma 4.7. K2 has a witness variable.

Proof. Property 2 tells us that if K2 has a witness variable, it must be the uniform distribution
on hom(K2, G), which we are writing as E. So, we just have to check that Property 3 holds for
X = E. Indeed

e(K2)H(E) + (v(K2)− 2e(K2))H(V ) = 1 ·H(E) + (2− 2) ·H(V ) = H(E) = H(X).
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So, we have a base case. What operations might the set of graphs with a witness variable be
closed under?

Definition. Given two graphs H1 and H2 and subsets S1 ⊆ V (H1) and S2 ⊆ V (H2) together
with a bijection f : S1 → S2 we define the glued graph H = H1 ⊕f H2 in the obvious way.
That is, the vertex set V (H) = (V (H1) ∪ V (H2))/(s ∼ f(s) : s ∈ S1) and E(H) is the image of
E(H1) ∪E(H2) under the quotient map (except we delete parallel edges). We will denote by S
the image of S1 (and S2) in H.

Lemma 4.8. Let H1 and H2 be graphs with witness variables X1 and X2 and let S1 ⊆ V (H1)
and S2 ⊆ V (H2) be independent sets. Suppose there is a bijection g : S1 → S2 such that the
marginal distribution of S1 in X1 is the same as the marginal distribution of g(S1) in X2, which
we will denote by XS. Let H = H1 ⊕g H2 and let Y be the conditionally independent coupling
of X1 and X2 over XS. Then Y is a witness variable for H.

Proof. To formally define Y we need to understand the maps ψi from Xi to XS . Informally, this
is pretty simple. X1 and X2 take values in hom(Hi, G), that is, functions f : V (Hi) → V (G).
For each such function the restriction of f to Si is a function in hom(Si, G) and so ψi is just the
map which restricts the image of Xi to Si. With these maps the range of Y is then

Y := {(f1, f2) : fi ∈ hom(Hi, G) and f1

∣∣
S1

= f2

∣∣
g(S1)
}.

However there is an obvious bijection from hom(H,G) → Y given by f 7→ (f
∣∣
V (H1)

, f
∣∣
V (H2)

).

Hence Y satisfies Property 1.

For Property 2 we need to check the marginal distribution of an edge (x, y) ∈ E(H) in Y .
Since S is independent, every edge in H is contained in H1 or H2, say without loss of generality
(x, y) ∈ E(H1). The marginal distribution of H1 in Y is X1, since Y is a coupling of X1 and
X2, and the marginal distribution of (x, y) in Y is determined by the marginal distribution of
H1 in Y . Hence, since X1 was a witness variable for H1 it follows that the marginal distribution
of (x, y) in X1, and hence in Y , is E.

Finally, for Property 3 we have to estimate the entropy of Y . We know that Y1 ∼ X1

and Y2 ∼ X2, and furthermore we can consider the random variable YS given by the marginal
distribution of S1 in Y , noting that YS ∼ XS .

Since Y determines and is determined by the triple (Y1, Y2, YS) we have that H(Y ) =
H(Y1, Y2, YS). Hence by Lemma 2.4

H(Y ) = H(Y1, Y2, YS) = H(YS) + H(Y1|YS) + H(Y2|Y1, YS).

Since, by construction, Y1 and Y2 are conditionally independent given YS , by Lemma 4.4

H(Y ) = H(YS) + H(Y1|XS) + H(Y2|YS).

On the other hand, since each Yi determines YS , again by Lemma 2.4 we can write

H(Yi) = H(Yi, YS) = H(YS) +H(Yi|YS).
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Combining these equalities we see

H(Y ) = H(Y1) + H(Y2)−H(YS) = H(X1) + H(X2)−H(XS).

Note that submodularity gives H(Y ) ≤ H(Y1)+H(Y2)−H(YS), however for our purposes we wish
to prove a lower bound of H(Y ), so it is useful that we get an equality here for the conditionally
independent coupling.

Then, by our assumption that X1 and X2 are witness variables we can bound them from
below as follows

H(Y ) = H(X1) + H(X2)−H(XS)

≥ e(H1)H(E) + (v(H1)− 2e(H1))H(V ) + e(H2)H(E) + (v(H2)− 2e(H2))H(V )−H(XS)

=
(
e(H1) + e(H2)

)
H(E) +

(
(v(H1) + v(H2))− 2(e(H1) + e(H2))

)
H(V )−H(XS)

= e(H)H(E) +
(
v(H) + |S| − 2e(H)

)
H(V )−H(XS)

= e(H)H(E) +
(
v(H)− 2e(H)

)
H(V ) +

(
|S|H(V )−H(XS)

)
.

Now, XS is a random variable on V (G)S , and hence

H(XS) ≤ log |V (G)||S| = |S| log |V (G)| = |S|H(V ).

It follows that
H(Y ) ≥ e(H)H(E) +

(
v(H)− 2e(H)

)
H(V ),

and so Y is indeed a witness variable for H.

So, we have a procedure for building new graphs with witness variables from other graphs
with witness variables. However, we can only do so when we have two independent sets which
have the same marginal distribution in the witness variables.

In fact, we already have some control over the marginal distribution of certain vertex sets
in witness variables. Indeed, since the marginal distribution of any edge of H is uniform, this
actually determines the marginal distribution of each vertex as well.

Lemma 4.9. Suppose H has no isolated vertices. Let D be a random variable taking values in
V (G) where for each v ∈ V (G)

P(D = v) =
d(v)

2e(G)
.

Then if X is a witness variable for H, then the marginal distribution of any vertex of H in X
is precisely D.

Proof. Note that, in the uniformly distributed random variable E, the marginal distribution of
a vertex in this edge is D. Indeed, if we let E = (U, V ) then for every x ∈ V (G)

P(U = X) =
∑

(x,y)∈E(G)

P(E = (x, y)) =
d(x)

2e(G)
.

However, since H has no isolated vertices, every vertex v ∈ V (H) is incident to some edge e.
Then, since the marginal distribution of e in X is E, it follows that the marginal distribution
of v in X is the marginal distribution of v in E, which is precisely D.
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In particular, if |S1| = |S2| = 1 in Lemma 4.8 then their marginal distributions in X1 and
X2 will agree. Therefore we can conclude

Lemma 4.10. If H1 and H2 are connected and have witness variables and H is formed by
gluiing H1 and H2 along a single vertex, then H has a witness variable.

A simple corollary of this is that trees satisfy Sidorenko’s conjecture.

Corollary 4.11. Every tree has a witness variable, and hence satisfies Sidorenko’s conjecture.

Proof. We prove this by induction on the number of vertices. The base case if T = K2, which
follows from Lemma 4.7. Suppose the Corollary holds for all trees with ≤ n vertices. Given a
tree T on n + 1 vertices we pick a leaf e and consider T − e. T − e has a witness variable by
assumption, and T is formed by gluing T − e and K2 along a single vertex. Hence by Lemmas
4.7 and 4.10 it follows that T has a witness variable.

Corollary 4.12. Let T be a tree, S ⊆ V (T ) be independent and let g : S → S be the identity
map. Then T ⊕g T has a witness variable.

In particular, every even cycle has a witness variable and hence satisfies Sidorenko’s conjec-
ture.

Proof. By Corollary 4.11 T has a witness variable and since g is the identity map it is trivially
true that the conditions of Lemma 4.8 hold. Hence T ⊕g T has a witness variable.

Both of these corollaries were already shown to hold by Sidorenko in his original paper using
the Cauchy-Schwartz and Hölder inequalities, however with relatively little extra work we can use
these ideas to prove that a class of graphs which are called tree-arrangeable satisfy Sidorenko’s
conjecture, which was the best known result before the use of entropy.

Definition. Suppose H is a bipartite graph on (A,B,E). Let us define two operations for
extending H.

� We may add a single vertex v to A and connect it to a single vertex b ∈ B, or

� We may add a single vertex v to B and connect it to a subset of N(b) for some vertex
b ∈ B.

A graph is called tree-arrangeable if it can be built from K2 via sequence of these operations.
For example, trees can be seen to be tree-arrangeable. Such graphs were defined by Kim, Lee and
Lee, who gave an equivalent description of such graphs and proved that they satisfy Sidorenko’s
conjecture. Using the entropy tools of Szegedy we can give a simple alternative proof.

We will need a slight strengthening of the concept of a witness variable. Note that, if we
fix a vertex v ∈ V (H) then NH(v) is an independent set and the marginal distribution of any
one of these neighbours is D, but these distributions are not independent. However it would be
nice if these marginal distributions were ‘as independent as possible’, that is, if we let Xv be
the marginal distribution of a fixed vertex v ∈ V (H), we would like that once we fix a value for
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Xv, say Xv = y ∈ V (G) that the random variables {(Xw|Xv = y) : w ∈ NH(v)} are mutually
independent and identically distributed. Note that, since the marginal distribution of every edge
is uniform, these random variables are always identically distributed since P(Xw = x|Xv = y) =

1
d(y) for every x ∈ NG(y).

Suppose H is a bipartite graph with bipartition classes A and B. We say that X is a balanced
witness variable for H if it is a witness variable for H and for every v ∈ B and y ∈ V (G) the
random variables {(Xw|Xv = y) : w ∈ NH(v)} are mutually independent. In other words, the
distribution of NH(v) can be obtained by choosing a sample from D and then picking d(v)
neighbours of this vertex independently and uniformly.

Theorem 4.13. Let H be a tree-arrangeable graph. Then H has a balanced witness variable,
and hence satisfies Sidorenko’s conjecture.

Proof. Our proof will proceed via induction on v(H), and this induction will need to use the
stronger condition of having a balanced witness variable, which is why we introduced the notion.

The base case is again H = K2. We know K2 has a witness variable, the uniform distribution
on the edges of G, and for each vertex the neighbourhood is a single vertex, which trivially
satisfies the stronger condition.

Suppose then that the inductive hypothesis holds for all v(H) ≤ n and let H be a tree-
arrangeable graph on n+ 1 vertices. By definition there is some v ∈ V (H) such that H can be
obtained from H − v from one of the two operations defined above.

Let us first assume that v ∈ A and is connected to a single b ∈ B, that is, H = H − v ⊕g K2

where g maps a vertex of K2 to b. As in Lemma 4.8 let X1 and X2 be witness variables for
H − v and K2 respectively and let Y be the conditionally independent coupling of X1 and X2

over Xb, the marginal distribution of b in X1. Note that X2 ∼ E and Xb ∼ D. By Lemma 4.8
Y is a witness variable for H, so it remains to check that Y is a balanced witness variable. Let
us define Yw to be the marginal distribution of w in Y for each w ∈ V (H) and let Xw be the
marginal distribution of w in X1 for w ∈ V (H − v).

For every b 6= b′ ∈ B the neighbourhood of b′ in H is the same as the neighbourhood as b′

in H − v. Since the marginal distribution of H − v in Y is just X1, it follows that the random
variables {Yw : w ∈ NH(b′)} ∪ {Yb′} have the same joint distribution as the random variables
{Xw : w ∈ NH(b′)} ∪ {Xb′}. In particular, for any y ∈ V (G) the set {(Yw|Yb′ = y) : w ∈ NH(b′)}
has the same distribution as the set {(Xw|Xb′ = y) : w ∈ NH(b′)} and hence, since X1 is a
balanced witness variable, are mutually independent.

Now, NH(b) = NH−v(b) + v. However, since NH−v(b) ⊆ H − v and Y is the conditionally
independent coupling of X1 and X2 over Xb it follows that, conditioned on the value of Yb, the
marginal distribution of NH−v(b) in Y is independent of the marginal distribution of v in Y .
In particular, conditioned on the value of Yb, {Yw : w ∈ NH−v(b)} is independent of Yv. Then,
since X1 and X2 were both balanced witness variables it follows that for any y ∈ V (G) the set
{(Yw|Yb = y) : w ∈ NH(b)} is mutually independent.

So, let us assume there is a v ∈ B which is connected to a subset of the neighbourhood of
some other b ∈ B. Hence H can be obtained by (H−v)⊕gK1,m where g is a map from the leaves
of K1,m to NH(v). Note that, since K1,m can be built from K2 using only the first operation,
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we may assume by induction that both H− v and K1,m have balanced witness variables X1 and
X2.

We claim that the set of leaves of K1,m has the same marginal distribution in X2 as the
independent set NH(v) in X1. Indeed, this follows from the assumption that both X1 and X2 are
balanced witness variables, since the leaves of K1,m are distributed uniformly and independently
as neighbours of the centre, whose distribution is D, and similarly the vertices of NH(b) are
distributed uniformly and independently as neighbours of b, whose distribution is D, and hence
so is the subset NH(v).

Hence we may apply Lemma 4.8 to see that the conditionally independent coupling of X1

and X2 over XNH(v) is a witness variable for H. It remains to check that this witness variable
is balanced.

However this claim follows for every v 6= b ∈ B from that fact that X1 is a strong witness
variable, and for v from the fact that X2 is a strong witness variable.

4.3 Shearer’s lemma and projection inequalities

4.3.1 Shearer’s Lemma

Given a sequence of discrete random variables random variables X1, X2, . . . , Xn and some subset
A ⊆ [n] let define XA := (Xi : i ∈ A).

Lemma 4.14 (Shearer’s inequality). Let X1, X2, . . . , Xn be discrete random variables and A
a collection (not necessarily distinct) of subsets of [n], such that each i ∈ [n] is in at least m
members of A. Then

H(X1, X2, . . . , Xn) ≤ 1

m

∑
A∈A

H(XA).

Proof. Let A = {a1, a2, . . . , ak} with a1 < a2 < . . . < ak. We have that

H(XA) = H(Xa1) +H(Xa2 |Xa1) + . . .+H(Xak |Xa1 , Xa2 , . . . , Xak−1
)

≥ H(Xa1 |X<a1) +H(Xa2 |X<a2) + . . .+H(Xak |X<ak),

where X<i = (X1, X2, . . . Xi−1). This follows from repeated applications of the chain rule, and
the fact that entropy only decreases if we condition on more variables. Therefore∑

A∈A
H(XA) ≥ m.

∑
i∈[n]

H(Xi|X<i)

= m.H(X1, X2, . . . , Xn)

4.3.2 The Bollobás-Thomason Box Theorem

Shearer’s Lemma is closely related to notions of isoperimetry, the relation between the volume
of a shape and it’s ‘perimeter’ in the following way. If we think about a shape S ⊆ Rn with area
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|S| then we can think about the process of picking a random point inside of S. This determines
a vector X = (X1, . . . , Xn) where the Xi are dependent on each other, depending on what the
shape S is.

Suppose we take a very fine grid approximating Rn, we can then think of S as being a
discrete subset of this grid, whose number of points is proportional to |S|. Since this vector
X = (X1, . . . , Xn) now has some finite range, we can relate the volume of S directly to the
entropy of X. That is

H(X) = log |S|.

How can we interpret the random variable XA for A ⊂ [n]? Well in this case, this is relatively
clear, these correspond to the projections on the shape S onto the subspace spanned by the
coordinates in A. That is, if we let SA be the projection of S onto the subspace

{(x1, . . . , xn) : xi = 0 for all i ∈ A}

Then the range of XA is the ‘volume’ (in the n − |A|-dimensional sense) of SA. We will write
Sj for S{j}.

In this way, Shearer’s inequality gives us a way to relate the volume of a shape to it’s lower
dimensional projections. For example, if we just consider the 1-dimensional projections, we have
the famous Loomis Whitney inequality:

Theorem 4.15 (The Loomis-Whitney inequality). Let S ⊂ Zn then,

|S|n−1 ≤
n∏
i=1

|S[n]\{i}|

For example, in two dimensions this simply says that the area of a shape can be bounded
above by the product of its one-dimensional projections, a relatively trivial fact. But even in
three-dimensions it is not clear what the relationship should be between the volume of a shape
and its projections onto two dimensional subspaces.

Notice that, this theorem is tight when |S| is a ‘box’, that is, a set of the form [1,m1] ×
[1,m2]× . . .× [1,mn]. Indeed, the volume of |S| is

∏n
i=1mi and the volume of the projection of

S onto the hyperplane where xi = 0 is just
∏
j 6=imi. This is perhaps not surprising, as a box

represents the case where the Xis are independent, where we get equality in the argument for
Shearer’s inequality.

In fact, we will show a more general theorem, and deduce the Loomis-Whitney theorem as
a corollary. We say a collection of sets C = {C1, . . . , Cm} ⊂ 2[n] is a k-uniform cover if each
i ∈ [n] belongs to exactly k many of the Cj .

Theorem 4.16 (Uniform covers theorem). Let S ⊂ Zn and let C ⊂ 2[n] be a k-uniform cover,
then

|S|k ≤
∏
C∈C
|SC |

Remark 4.17. Note that C = {[n] \ {i} : i ∈ [n]} is an (n − 1)-uniform cover of [n], and so
Theorem 4.15 follows from Theorem 4.16.
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Proof. Let us choose a points X = (X1, . . . , Xn) uniformly at random from S. Then, H(X) =
log |S|. By Lemma 4.14 it follows that

H(X) ≤ 1

k

∑
C∈C

H(XC).

However, the range of XC is |SC | and so it follows that

H(X) ≤ 1

k

∑
C∈C

log |SC |.

Combining the two equatons we see that

log |S| ≤ 1

k

∑
C∈C

log |SC |

and so
|S|k ≤

∏
C∈C
|SC |,

as claimed.

As before, if we consider the 1-uniform cover {{i} : i ∈ [n]}, Theorem 4.16 tells us the
elementary fact the volume of a shape can be bounded by the product of its one-dimensional
projections. We also note that, whilst Theorem 4.16 is a simple consequence of Shearer’s Lemma,
it is not hard to show that Shearer’s Lemma is a consequence of Theorem 4.16.

By taking limits of finer and finer grids it is possible to show that Theorem 4.16 also holds
for subsets of Rn with the lebesgue measure. In fact a rather amazing strengthening of Theorem
4.16 can be shown to hold, which is known as the Bollobás-Thomason Box Theorem. In what
follows we will write |S| for the Lebesgue measure of a set S ⊆ Rn.

Theorem 4.18 (Bollobás-Thomason Box Theorem). Let S ⊂ Rn be compact. Then there is a
box A ⊂ Rn such that |A| = |S| and |AI | ≤ |SI | for all I ⊆ [n].

That is, for any shape we can find a box of the same volume such that every lower dimen-
sional projection of this box has smaller volume than the corresponding projection of S. This
immediately tells us that for any upper bound we might want to prove for the volume of a set
in terms of the volumes of its projection, we only have to check that it holds for boxes.

Indeed, if we know that for every box A, |A| ≤ f(AI : I ⊂ [n]) for some function f which is
increasing in each coordinate, then for any S we have that |S| = |A| ≤ f(AI : I ⊂ [n]) ≤ f(SI :
I ⊂ [n]).

It is possible to prove this theorem via a continuous version of Theorem 4.16 (which can be
proven analytically using H older’s inequality) and a careful inductive argument, but we can also
do so using an entropy argument, however to do so we will need to define a notion of entropy for
continuous random variables. Suppose X is a continuous random variable taking values in Rn
with probability density function f , then a natural guess for the entropy of X is the following:

H(X) = −
∫
f(x) log f(x)dx
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where integration is with respect to the Lebesgue measure. As we saw on the example sheets
this does not inherit every property of the discrete entropy, for example it can take negative
values. However, many of useful properties of H are still true in this setting, and we will assume
without proof that the following are true:

� If P(X ∈ S) = 1 then H(X) ≤ |S| with equality if (and only if) X is uniform on S;

� For any X and Y , H(X|Y ) ≤ H(X).

� If we write X = (X1, . . . , Xn) and XI = (Xi : i ∈ I) then

H(X) =
n∑
i=1

H(Xi|X[i−1]).

Proof of Theorem 4.18. Let X be a random variable uniformly distributed on S, then H(X) =
log(|S|). Let us define ai = 2H(Xi|X[i−1]) and let A = [0, a1]× [0, a2]× . . .× [0, an] be a box in Rn.

Now, for any I ⊆ [n], XI takes values in SI , and hence H(XI) ≤ log |SI |. On the other hand,
using the chain rule we see that, if I = {i1 < i2 < . . . < ik}

H(XI) = H(Xi1) + H(Xi2 |Xi1) + . . .+ H(Xik |Xi1 , Xi2 , . . . , Xik−1
)

≥
∑
j∈I

H(Xj |X[j−1])

=
∑
j∈I

log aj

= log

∏
j∈I

aj


= log |AI |.

Hence, log |SI | ≤ log |AI | and so |SI | ≤ |AI |.

Since, as mentioned above, Theorem 4.16 is in fact equivalent to Shearer’s lemma we might
expect there to be an entropy equivalent to the Box Theorem, and we shall show on the example
sheet that this is the case.

Theorem 4.19. Let X = (X1, . . . , Xn) be a discrete random variable. Then there are non-
negative constants h1, . . . , hn such that H(X) =

∑
i hi and∑

i∈I
hi ≤ H(XI)

for every I ⊆ [n].

4.3.3 Isoperimetry

Given a space with a notion of volume and boundary, the isoperimetric problem asks how small
the boundary of a shape of fixed volume can be, and perhaps even what can be said about the
structure of shapes which achieve this minimum.
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The Loomis-Whitney theorem can be thought of as a type of isoperimetric inequality, bound-
ing the volume of a shape in terms of it’s lower dimensional projections. We can in fact relate
Shearer’s Lemma directly to some isopermetric theorems in graphs.

In a graph, there is a natural notion of ‘volume’ given by the cardinality of a set of vertices
and there are a few natural notions of boundary one can consider. In terms of vertices we could
consider either the inner or outer vertex boundary of a subset S ⊆ V , which is

∂+
v (S) := {w ∈ V (G) \ S : there exists v ∈ S with (v, w) ∈ E(G)},

or
∂−v (S) := {w ∈ S : there exists v ∈ V (G) \ S with (v, w) ∈ E(G)}.

Or, in terms of edges we could consider the edge-boundary, which is

∂(S) := {(v, w) ∈ E(G) \ S : v ∈ S and w ∈ V (G) \ S}.

For any of these types of boundaries we can consider the isoperimetric problem in a graph G.
These problems have been well studied in particularly structured, lattice-like graphs.

As a simple example, suppose G = Qd is the d-dimensional hypercube. The isoperimetric
problem, for both edge and vertex boundary, in Qd has been well studied. In fact, the problem
of finding a subset S ⊆ V (Qd) of fixed size which minimises ∂(S) was first considered due to an
application to error-correcting codes.

Suppose we wish to encode the integers {1, . . . , 2d} into {0, 1}d so that we can send them
across a channel, but we want to try and make sure that we don’t lose too much information
if some bit is incorrectly transmitted. To put it another way, for every edge (u, v) ∈ Qd there
is some error we get by transmitting u instead of v, and we wish to minimise the sum of these
errors over the whole edge set.

Explicitly, we wish to find a bijection f : {0, 1}d → [2d] such that the sum∑
(u,v)∈E(Qd)

|f(u)− f(v)|

is minimised. Harper gave an explicit way to construct all functions achieving the minimum
using the following observation: If we let S` be f−1([`]) then we can express∑

(u,v)∈E(Qd)

|f(u)− f(v)| =
∑
`∈[2d]

∂(S`).

Indeed, an edge between f−1(i) and f−1(j), with say i < j, contributes j − i to the left hand
side, but the edge (f−1(i), f−1(j)) is in the boundary of Si, Si+1, . . . , Sj−1 and so contributes
j − i to the right hand side.

Harper showed how to construct functions which in fact minimised ∂(S`) for each ` individ-
ually, which then also clearly give a minimum for the sum.

In other words, this gives an ordering of the vertices of Qd such that for each ` the edge
boundary of the first ` vertices is the minimum size of an edge boundary of any set of ` vertices
in Qd.
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A particular consequence of this is that the edge boundary for sets of size 2k is minimised by
a subcube of size k, that is a set of the form

S = {(x1, x2, . . . , xd) : xi = yi for all i ∈ I}

for some I ⊆ [d] of size d− k and a fixed vector y ∈ {0, 1}I . In this case we have that |S| = 2k

and every point in S has d − k neighbours outside of S, and so |∂(S)| = (d − k)2k. Using
Shearer’s lemma we can give a short proof of an isoperimetric inequality for Qd which is tight
for subcubes.

Lemma 4.20. Let S ⊆ V (Qd) then

|∂(S)| ≥ log

(
2d

|S|

)
|S|.

Proof. Let X be a random variable uniformly distributed over S and let X = (X1, . . . , Xd) be
it’s marginal distributions on the coordinates of Qd. Since X is uniform, H(X) = log |S|. Let
X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xd) for each i ∈ [d]. By Shearer’s lemma

H(X) ≤ 1

d− 1

d∑
i=1

H(X(i))

or equivalently

H(X) ≥
d∑
i=1

(H(X)−H(X(i))) =
d∑
i=1

H(Xi|X(i)).

If we let

S(i) =

{
(x1, . . . , xi−1, xi+1, . . . , xd) :

{
(x1, . . . , xi−1, 0, xi+1, . . . , xd) ∈ S, or

(x1, . . . , xi−1, 1, xi+1, . . . , xd) ∈ S

}
, (4.2)

be the range of X(i), then by definition of conditional entropy

H(Xi|X(i)) =
∑

x(i)∈S(i)

P(X(i) = x(i))H(Xi|X(i) = x(i)).

However, we can split into two cases. Given (x1, . . . , xi−1, xi+1, . . . , xd) ∈ S(i) either one or
both of (x1, . . . , xi−1, 0, xi+1, . . . , xd) and (x1, . . . , xi−1, 1, xi+1, . . . , xd) are in S.

In the first case, P(X(i) = x(i)) = 1
|S| , since X was uniformly distributed, and H(Xi|X(i) =

x(i)) takes a single value, and hence has 0 entropy. In the second case, P(X(i) = x(i)) = 2
|S| and

H(Xi|X(i) = x(i)) is uniformly distributed over 2 values, and hence has entropy one.

However, there is a clear bijection between points of the first type and edges from S to Sc in
‘direction’ i. Indeed, x ∈ S has a neighbour outside s in direction i if and only if x(i) is of the
first type. So, since each x(i) of the second type corresponds to two x ∈ S, Hence

H(Xi|X(i)) = (|S| − |∂i(S)|) 1

|S|
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where ∂i(S) is the edge boundary in direction i. It follows that

log |S| = H(X) ≥
d∑
i=1

H(Xi|X(i)) ≥
d∑
i=1

(|S| − |∂i(S)|) 1

|S|
≥ d− |∂S|

|S|
.

Re-arranging we see that

|∂(S)| ≥ |S|(d− log |S|) = |S| log

(
2d

|S|

)
as claimed.

We can also consider other graphs. For example, consider the l1 grid on Zd, that is, the
graph where two points x, y ∈ Zd are joined by an edge if ||x − y||1 = 1. Both the vertex and
edge-isoperimetric problem have been fully solved in these graphs, in the strong sense that there
is some ordering of the vertices such that initial segments of size i have the smallest boundary
over all sets of size i for each i, as in Harper’s theorem. For the vertex boundary the optimal sets
grow like balls of fixed radius around the origin, whereas for the edge boundary the sets grow like
cubes. If we write ∂i as before for the edge boundary in direction i we see that ∂(S) =

∑
i ∂i(S).

Given a cube of side length n we have |S| = nd and ∂(S) =
∑

i ∂i(S) = 2dnd−1 = 2d|S|
(d−1)
d .

Again, we can use Shearer’s Lemma, or in this case the Loomis-Whitney inequality directly,
to give an edge-isoperimetric inequality which is tight for cubes.

Theorem 4.21. Let S ⊆ Zd be finite. Then

|∂(S)| ≥ 2d|S|
(d−1)
d .

Proof. We can think of each point in the projected set S[d]\{i} as corresponding to multiple

points in S ∩ L, where L is an infinite line in Zd formed by fixing all other co-ordinates and
letting the ith co-ordinate vary. For each point in the projected set there are at least two edges
in the boundary ∂i in the ith direction, coming from the points in S∩L with largest and smallest
ith co-ordinate respectively.

Hence, ∂(S) =
∑

i ∂i(S) ≥
∑

i 2|S[d]\{i}|. However by the arithmetic geometric mean inequal-
ity ∑

i

2|S[d]\{i}| ≥ 2d

(∏
i

|S[d]\{i}|

) 1
d

.

Hence, by the Loomis-Whitney inequality

∂(S) ≥ 2d

(∏
i

|S[d]\{i}|

) 1
d

≥ 2d|S|
(d−1)
d .

This approach also allows one to prove a ‘stability’ type result for edge-isoperimetry in Zd.
Recall from the exercise classes that we showed that given a random variable X taking values
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on X if U is the uniform random variable on X then we can bound H(X) from above with some
function of ||X − U ||1, this was Pinsker’s inequality. Using Pinsker’s inequality one can show
the following ‘stability’ version of the uniform covers theorem:

Theorem 4.22. For every d ≥ 2 there is some constant c(d) > 0 such that the following holds.
Let S ⊂ Zd and let C ⊂ 2[d] be a k-uniform cover such that for every i 6= j ∈ [n] there are at
least α > 0 many C ∈ C containing i but not j. If

|S| ≥ (1− ε)

(∏
C∈C
|SC |

) 1
k

then there exists a box B ⊂ Zd such that

|S4B| ≤ c k
α
ε|S|.

Using the above one can follow the proof of Theorem 4.21 to show that any almost optimal
shape is close in symmetric difference to some box. With some careful combinatorial arguments,
one can deduce that this box in fact has to be very close to a cube, leading to the following
stability version of Theorem 4.21,

Theorem 4.23. Let S ⊆ Zd be finite, such that

|∂(S)| ≤ (1 + ε)2d|S|
(d−1)
d ,

then there exists a cube C ⊆ Zd such that

|S4C| ≤ 72d
5
2
√
ε|S|.

4.3.4 Counting Matroids

A matroid is very general combinatorial object which models a notion of independence, in the
sense of vectors in a finite dimensional vector space. One classic example of this comes from the
cycle matroid of a graph, where sets of edges are considered independent if they form a forest.

We will use the following definition of a matroid, mostly since it is the most compact,
but there are many equivalent axiom schemes defining matroids in terms of their independent
sets/cycles/rank functions etc. For us, a matroid will be a pair (E,B) where E is a finite set
and B is a non-empty collection of subsets of E, which we call bases, which satisfy the following
base exchange axiom

For all B,B′ ∈ B and all e ∈ B \B′, there exists an f ∈ B′ \B such that B − e+ f ∈ B (4.3)

This axiom implies that every B ∈ B has the same cardinality, which we call the rank of the
matroid. Let us write mn,r for the number of matroids of rank r on E = [n] and mn for the
number of matroids on E = [n].

Clearly mn ≤ 22n , which is equivalent to log logmn ≤ n, and Piff gave an improved bound
of log logmn ≤ n − log n + O(1). On the other hand, this isn’t too far from the true value, as
Knuth showed that

mn ≥ 2
1
n( n

n/2)
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which means that log logmn ≥ n− 3
2 log n+O(1). Both of these bounds were shown in the 70s,

and since then Piff’s bound has been improved to almost match Knuth’s lower bound. In this
section we will present a very short argument that gives a slightly weaker bound than that of
Knuth, whose proof was quite involved.

Given a set E and r ≤ |E| let us consider the set of collections of r-sets of E which define
bases of a matroid, together with the empty set. That is

ME,r = {B ⊆ E(r) : B satisfies (4.3)}.

Note that, since we allow ∅ ∈ ME,r we have that |ME,r| = m|E|,r + 1. It will be useful to

identify the elements B ofME,r with their characteristic vectors in the space ZE(r)

2 , where each
coordinate corresponds to an r-set of E.

Given a matroid (M,B) and a subset T ⊆ E which is contained in some basis of M , then
contracting T gives rise to a new matroid M/T := (E \ T,B/T ) where

B/T := {B \ T : B ∈ B, T ⊆ B}

It follows from (4.3) that M/T is in fact a matroid, and so B/T ∈ ME\T,r−t. However, even if
T is not contained in some basis of M , then the set B/T = ∅ and so, even though (E \ T,B/T )
is no longer a matroid, B/T ∈ME\T,r−t.

Note also that we can view the contraction operation as a projection in ZE(r)

2 , where con-

tracting T is equivalent to projecting onto the
(|E|−t
r−t

)
coordinates corresponding to r-sets of E

containing T . This observation will allow us to use Shearer’s Lemma to bound the number of
matroids of a fixed rank.

Lemma 4.24. Let 0 ≤ t ≤ r ≤ n. Then

log(mn,r + 1)(
n
r

) ≤ log(mn−t,r−t + 1)(
n−t
r−t
)

Proof. Let n = |E| and let us consider a random variables X which is uniformly distributed over

ME,r, where we will think of X as taking values in {0, 1}E(r)
. As always, since X is uniformly

distributed, we have that

H(X) = log |ME,r| = log(mn,r + 1).

Given T ∈ E(t) let us denote by XT the projection of X onto the
(|E|−t
r−t

)
coordinates corre-

sponding to r-sets of E containing T . Since XT takes values in ME\T,r−t it follows that

H(XT ) ≤ log |ME\T,r−t| = log(mn−t,r−t + 1).

If we let A(T ) = {S ∈ E(r) : T ⊆ S} the we see that {A(T ) : T ∈ E(t)} covers each element
of E(r) precisely

(
r
t

)
times, since each S ∈ E(r) is counted once for each of its subsets T of size

t. Hence, by Lemma 4.14

log(mn,r + 1) = H(X) ≤ 1(
r
t

) ∑
T∈E(t)

H(XT ) ≤
(
n
t

)(
r
t

) log(mn−t,r−t + 1).

48



However it is easy to verify that (
n
t

)(
r
t

) =

(
n
r

)(
n−t
r−t
)

from which the result follows.

Lemma 4.24 allows us to use bounds for the number of lower rank matroids to bound the
number of higher rank matroids. For example, since we know that there is exactly one matroid
of rank 0, namely B = ∅, we could use Lemma 4.24 with t = r to see that

log(mn,r + 1) ≤
(
n

r

)
log(mn−r,0 + 1) =

(
n

r

)
which isn’t an especially good bound, it is essentially the fact that ∅ 6= B ⊆ [n](r). However,
if we use matroids of rank 1 we can see that mn,1 = 2n − 1, since any collection of singletons,
apart from the empty set, satisfies (4.3). Hence, taking t = r − 1

log(mn,r + 1) =≤
(
n

r

)
log(mn−t,1 + 1)(

n−r
1

) =

(
n

r

)
n

n− r
,

a slightly better bound. So, to get a good bound on mn,r we just need to find a good bound on
mn,k for some small k, and it turns out k = 2 is actually sufficient for our purposes.

Lemma 4.25.
log(mn,2 + 1) ≤ (n+ 1) log(n+ 1).

Proof. We first note that to every matroid of rank 2 we can associate a set E0 ⊆ [n] and a
partition {E1, . . . , Ek} of [n] \ E0 such that

B = {{e1, e2} : e1 ∈ Ei, e2 ∈ Ej , 0 < i < j ≤ k}.

Indeed, let E0 := {e ∈ E : e 6∈ B for all B ∈ B}. Let us define a relation on E \ E0 by e ∼ f
if {e, f} 6∈ B. Note that ∼ is transitive. Indeed, suppose that e ∼ f and f ∼ g but e 6∼ g.
By definition {e, g} ∈ B and since f ∈ E \ E0 there exists h ∈ E \ E0 such that {f, h} ∈ B.
By applying (4.3) to h ∈ {f, h} and {e, g} we see that {e, f} or {f, g} ∈ B, contradicting our
assumption that e ∼ f and f ∼ g.

Hence ∼ is an equivalence relation, and if we let E1, . . . , Ek be the equivalence classes of ∼
on [n] \ E0 we see that the claim about B holds. However, clearly different matroids determine
different pairs (E0, {E1, . . . , Ek}) and so we can bound mn,2 by the number of such pairs. In
fact, since no matroid determines the pair ([n], ∅), we can even bound |M[n],2| = mn,2 + 1 by
this amount.

Clearly the function mapping the pair (E0, {E1, . . . , Ek}) to the partition {E0∪{n+1}, E1, . . . , Ek}
of [n + 1] is injective, and hence this number is at most the number of partitions of [n + 1]. A
very crude bound of (n + 1)n+1 for this number will be sufficient for our purposes, although
better bounds are known for the Bell numbers as they are known.

Hence
mn,2 + 1 = |M[n],2| ≤ (n+ 1)(n+1)

from which the result follows.
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Using this we can give the following bound on mn.

Theorem 4.26.

log logmn ≤ n−
3

2
log n+ log log n+O(1).

Proof. Applying Lemma 4.24 with t = r − 2 we see that for each r ≤ n

logmn,r ≤ log(mn,r + 1) ≤
(
n

r

)
log(mn−r+2,2 + 1)(

n−r+2
2

)
≤
(
n

r

)
(n+ 1) log(n+ 1)(

n−r+2
2

)
=

(
n+ 2

r

)
2 log(n+ 1)

n+ 2
.

Since mn =
∑

r≤nmn,r, it follows that mn ≤ (n+ 1) maxrmn,r and so

logmn ≤ log(n+ 1) + max
r

log(mn,r).

We note that
(
n+2
r

)
is maximised at r = b (n+2)

2 c, and from the inequality(
2m

m

)
≤ 22m

√
2m

it follows that (
n+ 2

b (n+2)
2 c

)
= O(2nn−

1
2 ).

Hence, we can conclude

logmn ≤ log(n+ 1) +

(
n+ 2

b (n+2)
2 c

)
2 log(n+ 1)

n+ 2
= O(log n2nn−

3
2 ).

Hence

log logmn ≤ n−
3

2
log n+ log log n+O(1).

It is tempting to hope that if we can get a better estimate for mn,3 or mn,4 we could even
close the gap between this bound and Knuth’s lower bound. However, unfortunately there are
good lower bounds for the quantity mn,k for fixed k as n→∞ which imply that this approach
cannot get rid of this log log n term.

In fact, Lemma 4.24 holds in a slightly more general context. If we look at the proof, we
never really used the fact that we were considering the set of all matroids of rank r, just that
when we contracted we stayed within the class of matroids that we care about. Indeed the exact
same proof shows that for any contraction-closed class of matroids F Lemma 4.24 still holds if
we let mn,r be the set of matroids of rank r on a ground set [n] in F . This can allow us to prove
interesting results about the relative density of certain contraction-closed classes of matroids in
the class of all matroids.
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A natural example of a contraction-closed class of matroids is the set of matroids not con-
taining a fixed matroid as a minor. For example, suppose we let U2,k be the uniform matroid of
rank 2 on k elements and let Ex(U2,k) = {M : N 6≤ M} be the set of matroids not containing
U2,k as a minor. It is relatively easy to get a good bound on the number of such matroids of
rank 3, specifically that

m′(n, 3) ≤ ck(k2)n. (4.4)

Indeed, suppose M is a simple (no loops or parallel edges) matroid of rank 3 without U2,k as a
minor and let e be an edge of M . A quick detour into some matroid theory is necessary. Given
a matroid M with a rank function r we can define the closure of a set X to be {f : r(X + f) =
r(X)}. When M is rank 3 matroid the closure of a rank 2 set is called a line.

Consider the set of lines in which e is contained in. If there are at least k different lines, then
when if we contract e, taking an edge from each of these lines will give a U2,k minor. Similarly,
every line contains at most k−1 points, since if we restrict to a line of size k′ we get a U2,k′ minor.
However, M is simple, every other edge f lies in a line with e and so |E| ≤ 1 + (k − 1)(k − 2).

Hence there is a glocal upper bound ck of the number of simple matroids of rank 3 witjout
a U2,k minor. Since every matroid is determined by its simplification and the assignment of its
non-loop edges to parallel classes, (4.4) follows.

By the same methods as before, (4.4) together with Lemma 4.24 implies that

log(m′n,r + 1) ≤
(
n

r

)
12 log(k)

n2
(1 + o(1)),

which is sufficiently strong to show that almost all matroids contain U2,k as a minors.

4.3.5 Inequalities

Shearer’s Lemma, in various guises, seems to crop up in many different contexts. In fact, many
well known inequalities can be considered as specific cases of Shearer’s Lemma, in a broad
setting.

Let us give an example, before proving a generalisation of Shearer’s Lemma that will prove a
whole host of well-known inequalities. Suppose we have positive integers a1, . . . , an and b1 . . . , bn.
Take pairwise disjoint subsets A1, A2, . . . , An of Z with |Ai| = ai, and pairwise disjoint subsets
B1, B2, . . . , Bn with |Bi| = bi. Let Si = Ai × Bi ⊂ Z2 and S =

⋃
i Si. Note that, S is a set of∑

k akbk many points in Z2.

Suppose we have pairwise disjoint subsets A1, A2, . . . , An of Z with |Ai| = ai, and pairwise
disjoint subsets B1, B2, . . . , Bn with |Bi| = bi. Let Si = Ai×Bi ⊂ Z2 and S =

⋃
i Si. Note that,

S is a set of
∑

k akbk many points in Z2.

We want to choose two points in S uniformly at random, but with the restriction that they
both lie in the same Si. Formally to do this let’s consider a random variable I which chooses an
index from [1, n] with

P(I = i) =
aibi∑
k akbk

.

51



Then, let X = ((X1, Y1), (X2, Y2)) be a pair of points chose uniformly at random from RI . Note
that both (X1, Y1) and (X2, Y2) are uniformly distributed amongst all the

∑
k akbk points in R,

but they are not independent.

Now, since (X1, Y1) and (X2, Y2) are uniformly distributed we know that

H(X1, Y1) + H(X2, Y2) = log

(∑
k

akbk

)
+ log

(∑
k

akbk

)
= 2 log

(∑
k

akbk

)
.

However let us instead consider the distribution of the pairs (X1, X2) and (Y1, Y2). The first,
whilst not necessarily uniform, is distributed over

∑
k a

2
k values, and the second over

∑
k b

2
k many

values and so

H(X1, X2) + H(Y1, Y2) ≤ log

(∑
k

a2
k

)
+ log

(∑
k

b2k

)
.

However, we can see that H(X1, Y1) + H(X2, Y2) = H(X1, X2) + H(Y1, Y2). Indeed, we note
that (Xi, Yi) determines I, but also Xi is independent of Yi conditioned on the value of I, and
so

H(X1, Y1) + H(X2, Y2) = H(X1, Y1, I) + H(X2, Y2, I)

= H(I) + H(X1|I) + H(Y1|X1, I) + H(I) + H(X2|I) + H(Y2|X2, I)

= H(I) + H(X1|I) + H(Y1|I) + H(I) + H(X2|I) + H(Y2|I)

however, X1 is independent of X2 given I, and similarly for Y1 and Y2 and so we can argue in
reverse that

= H(I) + H(X1|I) + H(Y1|I) + H(I) + H(X2|I) + H(Y2|I)

= H(I) + H(X1|I) + H(Y1|I) + H(I) + H(X2|X1, I) + H(Y2|Y1I)

= H(X1, X2, I) + H(Y1, Y2, I) = H(X1, X2) + H(Y1, Y2).

So we can conclude that

2 log

(∑
k

akbk

)
= H(X1, Y1)+H(X2, Y2) = H(X1, X2)+H(Y1, Y2) ≤ log

(∑
k

a2
k

)
+log

(∑
k

b2k

)
.

By taking powers of both sides we get(∑
k

akbk

)2

≤

(∑
k

a2
k

)(∑
k

b2k

)
which you should recognise as the Cauchy-Schwartz inequality.

So, how can we generalise this idea? As we saw on the example sheet, we can think of
Shearer’s Lemma as the following result about set systems (and in fact this is what Shearer
originally proved).

Theorem 4.27. Let t ∈ N, H = (V,E) be a hypergraph and F1, . . . , Fr be subsets of V such
that every vertex in V belongs to at least t of the sets Fi. Let Hi = (V,Ei) be the projection
hypergraphs, where Ei = {e ∩ Fi : e ∈ E}. Then

|E|t ≤
∏
i

|Ei|.
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We will prove a weighted version of the above lemma, whose proof will closely follow our
example, and then show how it can be used to deduce some other inequalities.

Lemma 4.28 (Weighted Shearer’s Lemma). Let H,E, V, t and F1, . . . , Fr be as in Lemma 4.27
and let wi : Ei → R+ be a non-negative weight function for each Ei. Then(∑

e∈E

r∏
i=1

wi(ei)

)t
≤

r∏
i=1

∑
ei∈Ei

wi(ei)
t

Remark 4.29. Firstly let us note that setting wi ≡ 1 for all i gives us Lemma 4.27. Secondly,
we can recover our example by taking the complete 1-uniform hypergraph V = E = [n],taking
F1 = F2 = V , so that t = 2, and letting w1(k) = ak and w2(k) = bk for all k ∈ [n]. Then the
lemma allows us to conclude∑

k∈[n]

akbk

2

≤

∑
k∈[n]

a2
k

∑
k∈[n]

b2k

 .

Proof. For ease of presentation we will assume that V = [n]. Also, it will be sufficient to prove
the result when all weights are positive integers. Let us create a multi-hypergraph from H by
taking each edge e ∈ E with multiplicity

∏
iw(ei), calling them e(c1,...,cr) where 1 ≤ ci ≤ wi(ei),

we call this graph H ′ = (V,E′). Similarly we will create from each Hi a multi-hypergraph
H ′i = (V,E′i) by taking each edge with multiplicity wi(ei), calling them eci where 1 ≤ c ≤ wi(ei).

Consider a random variable Y which is uniformly distributed over E′, and consider the
following random variable:

� X = (X1, . . . , Xn) is the characteristic vector of the edge Y (i.e Xk = 1 if and only if
k ∈ Y );

� C = (C1, C2, . . . , Cr) is the index of Y .

Note that Y is determined by and determines (X,C).

Since Y is uniform on E′ we have that

H(Y ) = log

(∑
e∈E

r∏
i=1

wi(ei)

)
.

In a similar fashion to the example above, we would like to say that, if we pick t copies of
Y independently, we can think of each copy of Y as being a ‘vector’ given by the projection of
Y onto Fi (both in terms of the edge, and the index Ci). By regrouping these terms, we might
hope to compare the entropy of these t copies of Y with the entropy of the collection Y 1, . . . , Y r,
where each Y i is the t independent projections of Y onto Fi.

So, let us also define some random variables Y 1, . . . , Y r where Y i is distributed on (E′i)
t as

follows: We choose an edge Z uniformly at random from E′ and pick independently and with
replacement t ‘copies’ of the edge Z ∩ Fi in E′i. That is we have
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� Xi = (Xi
1, . . . , X

i
n) is the characteristic vector of the edge Z ∩ Fi;

� Ci = (Ci1, C
i
2, . . . , C

i
t) are the indices of the t ‘copies’ of Z ∩ Fi we choose;

and Y i is determined by and determines (Xi, Ci).

Let us note a few properties of these random variables. Firstly, the joint distribution of
(Xi

k : k ∈ Fi) is the same as the joint distribution of (Xk : k ∈ Fi). Also, conditioned on a
fixed value of Xi, {Ci1, Ci2, . . . , Cit)} is mutually independent, and each is uniformly distributed
between 1 and wi(X

i). Similarly, conditioned on a fixed value of X, Ci is distributed uniformly
between 1 and wi(X ∩ Fi).

Now, each Y i can take at most
∑

ei∈Ei wi(ei)
t different values and so

H(Y i) ≤ log

∑
ei∈Ei

wi(ei)
t

 .

Hence it will be sufficient to show that

tH(Y ) ≤
r∑
i=1

H(Y i).

However, by the chain rule

H(Y ) = H(X,C) =
n∑

m=1

H(Xm|X[m−1])+
r∑
i=1

H(Ci|X,C[i−1]) =
n∑

m=1

H(Xm|X[m−1])+
r∑
i=1

H(Ci|X),

since the Ci are mutually independent given X.

Similarly we can express

H(Y i) = H(Xi, Ci) =
∑
m∈Fi

H(Xi
m|Xi

` : ` < m, ` ∈ Fi) +
t∑

k=1

H(Cik|Xi, Ci[k−1])

=
∑
m∈Fi

H(Xi
m|Xi

` : ` < m, ` ∈ Fi) +
t∑

k=1

H(Cik|Xi)

where again we have use the fact that the Cik are independent given Xi. However, as we noted
(Xi

m : m ∈ Fi) has the same distribution as (Xm : m ∈ Fi), and also (Cik|Xi = ei) has the same
distribution as (Ci|X = e) for all e ∈ E. Hence, since Cik is only depends on (Xi

m : m ∈ Fi), it
follows that

∑
m∈Fi

H(Xi
m|Xi

` : ` < m, ` ∈ Fi) +
t∑

k=1

H(Cik|Xi) =
∑
m∈Fi

H(Xm|X` : ` < m, ` ∈ Fi) + tH(Ci|X)
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Hence we can write

r∑
i=1

h(Y i) =
r∑
i=1

∑
m∈Fi

H(Xm|X` : ` < m, ` ∈ Fi) + tH(Ci|X)


≥

r∑
i=1

∑
m∈Fi

H(Xm|X[m−1])

+ t

r∑
i=1

H(Ci|X)

≥ t
n∑

m=1

H(Xm|X[m−1]) + t

r∑
i=1

H(Ci|X)

= H(Y ).

In fact it will be useful to consider an even more general weighted version, where we also
allow the integer t to be ‘fractionally covered’

Lemma 4.30. Let H,E, V, t, Fi and wi be as in Lemma 4.28. Let α = (α1, . . . , αr) be a vector
of non-negative weights such that for each v ∈ V∑

i : v∈Fi

αi ≥ 1

(i.e α is a ‘fractional cover’ of the hypergraph whose edges are the Fi). Then,

∑
e∈E

r∏
i=1

wi(ei) ≤
r∏
i=1

∑
ei∈Ei

wi(ei)
1
αi

αi

.

This lemma can can deduce from Lemma 4.28 by constructing an appropriate multi-hypergraph
for which the number of copies of each edge is determined by its weight. As we will see, many
classical inequalities can be deduced from Lemma 4.30 by choosing the right hypergraph and
fractional covering. We note also, as we will see on the example sheet, one can give a necessary
condition for equality to hold in these generalised Lemma’s, which also give information about
the equality cases of these inequalities.

Theorem 4.31 (Hölder’s Inequality). Let a1, . . . , ak, b1, . . . , bk ∈ R+ and λ ∈ (0, 1). Then,

∑
k

akbk ≤

(∑
k

a
1
λ
k

)λ(∑
k

b
1

(1−λ)
k

)(1−λ)

Proof. We choose, as in the case of Cauchy-Schwartz, H to be the complete 1-uniform hyper-
graph on [n], F1 = F2 = [n], w1(k) = ak, w2(k) = bk) and let α = (λ, 1 − λ). Note that the
conditions of Lemma 4.30 are satisfied, and hence we can conclude that the above inequality
holds.

Theorem 4.32 (Generalised Hölder’s Inequality). Let γ1, . . . γk ∈ R+ be such that
∑ 1

γi
= 1

and let aij ∈ R+ for 1 ≤ i ≤ n and 1 ≤ j ≤ r. Then,

n∑
i=1

r∏
j=1

aij ≤
r∏
j=1

(
n∑
i=1

a
γj
ij

) 1
γj
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Proof. As before let us choose H to be the complete 1-uniform hypergraph on [n], F1 = F2 =
. . . = Fr = [n] and wj(i) = aij for each i, j. Finally let us take the fractional cover α =
( 1
γ1
, . . . , 1

γr
). As before it is easy to see that the conditions of Lemma 4.30 are satisfied and

hence we can conclude that the above inequality holds. which is to say

Theorem 4.33 (Monotonicty of `p norms). Let a1, . . . an ∈ R+ and let t < r ∈ N. Then(
n∑
k=1

ark

) 1
r

≤

(
n∑
k=1

atk

) 1
t

.

Proof. Let V = [r]×[n] and E = {e(k) = [r]×{k} : k ∈ [n]}. Let us take Fi = {i, i+1, . . . , i+t−1}
mod r×[n] for i = 1, . . . , r, α = (1

t ,
1
t , . . . ,

1
t ) and let wi(e

(k)
i ) = ak for each i, k. Then, by Lemma

4.30
n∑
k=1

ark =
∑
e∈E

r∏
i=1

wi(ei) ≤
r∏
i=1

∑
ei∈Ei

wi(ei)
1
αi

αi

=

r∏
i=1

(
n∑
k=1

atk

)t
,

which re-arranges to the desired inequality.

Note that, from the above inequality it is easy to prove that this holds for arbitrary q < p ∈
Q+, and hence by a limiting argument for arbitrary q < p ∈ R+.

Theorem 4.34. Let A,B,C be a i× j, j × k and k × i matrices respectively. Then

Tr(ABC) ≤
√

Tr(AAt)Tr(BBt)Tr(CCt).

Proof. Let H be a complete tripartite hypergraph graph on vertex sets I, J,K with |I| = i, |J | =
j, |K| = k. Let F1 = I ∪ J , F2 = J ∪K and F3 = K ∪ I and let α = (1/2, 1/2, 1/2). Finally for
an edge e = {r, s, t} let w1(e1) = ars, w2(e2) = bst and w3(e3) = ctr. Then, by Lemma 4.30

∑
r,s,t

arsbstctr =
∑
e∈E

r∏
i=1

wi(ei) ≤
r∏
i=1

∑
ei∈Ei

wi(ei)
1
αi

αi

=

(∑
r,s

a2
rs

) 1
2
(∑

s,t

b2st

) 1
2
(∑

t,r

c2
tr

) 1
2

,

which can be seen to be equivalent to the claimed inequality.

Lemma 4.30 has an obvious continuous analogue, that in fact was shown by Finner well before
the discrete version here was considered by Freidgut, from which many interesting functional
inequalities can be deduced in a similar fashion. Lemma 4.28 was first considered by Friedgut
and Rödl, who used it to give an entropy based proof of a hypercontractive inequality, a result
that has been extremely useful in the study of boolean functions, by considering an appropriate
hypergraph.

4.4 Embedding Graphs

Suppose we have a fixed graph H and a graph G with a fixed number ` of edges, how many
‘copies’ of H can there be in G? Of course, to answer this question we have to choose what we
mean by ‘copy’, and in this section we will consider embeddings of graphs. An embedding of H

56



into G is an injective function f : V (H) → V (G) which preserves adjacency, in other words an
injective homomorphism. Given a pair of graphs H and G we will write embed(H,G) for the
number of embeddings of H into G and

embed(H, `) := max
e(G)=`

embed(H,G).

The problem we will consider in this section is giving a good upper bound for embed(H, `). As
a simple example, let us consider the embedding number of a triangle embed(K3, `).

For any graph G with ` edges and v ∈ V (G), v can be the ‘top vertex’ in at most 2` triangles,
by considering where the ‘bottom’ edge of the triangle is, but also can be the top vertex of at
most d(v)(d(v) − 1) ≤ d(v)2 many triangles, by considering where the edges adjacent to v are
mapped. Since min{d(v)2, 2`} ≤ d(v)

√
2` it follows that

embed(K3, G) ≤
∑

v∈V (G)

d(v)
√

2` = 2
√

2`
3
2 ,

and hence embed(K3, `) ≤ 2
√

2`
3
2 . However this bound can be seen to be the correct order of

magnitude since the complete graph on
√

2` vertices contains at least
√

2`(
√

2`− 1)(
√

2`− 2) ≈
2
√

2`
3
2 embeddings of K3, and has approximately ` edges.

There is an ‘obvious’ way to use entropy to try and bound embed(H,G) from above. We let
X be a embedding of H into G chosen uniformly at random, and then any bound on H(X) can
be used to bound embed(H,G). So, how might we bound H(X)?

Well, let us assume that e(G) = ` and V (H) = {v1, . . . , vn}. If we let Xi be the image of vi
under the embedding X for each i then clearly X is determined by and determines (Xi : i ∈ [n])
and so we can instead estimate H(Xi : i ∈ [n]). Now, we’d like to use one of our results on entropy
to split this quantity up further, into more local random variables that we can estimate. We
don’t have too much control over where individual vertices are mapped, but we know that the
range of an edge (Xi, Xj) is at most 2`, and hence H(Xi, Xj) ≤ log(2`) for every (vi, vj) ∈ E(H).

So, given a multi-set of edges F which covers each vertex m many times we can use Shearer’s
lemma to say

H(X) ≤ 1

m

∑
(i,j)∈F

H(Xi, Xj) ≤
1

m
|F| log(2`).

Clearly for any fixed H there is some family F minimising the quantity |F|m and choosing such

a family gives us a bound of the type embed(H,G) ≤ c`
|F|
m .

If we let m = 1 then we’d like to find the smallest family of edges F such that every vertex is
in at least one of these edges. Such a family F is a vertex cover of H and the size of a smallest
such family is the vertex cover number of H, commonly denoted by ρ(H). However, it will turn
out that by varying m we can often get a better bound. To this end let us define a fractional
version of the above. It will be convenient to move from the discrete setting to a continuous
version, which we do as follows.

Note that we could equivalently have defined a vertex cover to be some function ϕ : E(H)→
{0, 1} such that for every v ∈ V (H) ∑

e∈E(G) : v∈e

ϕ(e) ≥ 1,
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and the vertex cover number to be the minimum of
∑

e∈E(H) ϕ(e) over all vertex covers. The
natural generalisation of this is then a fractional cover which is a function ϕ : E(H) → [0, 1]
such that for every v ∈ V (H) ∑

e∈E(G) : v∈e

ϕ(e) ≥ 1,

and the fractional cover number, which we denote by ρ∗(H), is the minimum of
∑

e∈E(H) ϕ(e)
over all fractional covers. Note that, since every vertex cover is a fractional cover, it follows that
ρ∗(H) ≤ ρ(H). Clearly now the hope is that we can show some bound of the form

embed(H, `) ≤ c`ρ∗(H).

In fact, not only does this bound hold, but a corresponding lower bound of the form c′c`ρ
∗(H)

can also be given. The following was originally a theorem of Alon, but we give a proof due
to Friedgut and Kahn, who actually proved a slightly more general result about embedding
hypergraphs.

Theorem 4.35. For every graph H there are constants c1, c2 < 0 such that for every `

c1`
ρ∗(H) ≤ embed(H, `) ≤ c2`

ρ∗(H).

Proof. Let us first show that the upper bound holds. Let G be a graph with e(G) = ` and
V (H) = {v1, . . . , vn}. Let X be an embedding of H into G chosen uniformly at random from
all embeddings. As always we have that H(X) = log (embed(H,G)) and so we wish to bound
H(X) as above. Let Xi be the image of vi under the embedding X, again as before H(X) =
H(Xi : i ∈ [n]).

Given ε > 0, let ϕ be a fractional vertex cover taking rational values such that
∑

e∈E(H) ϕ(e)
is at most ρ∗(H) + ε. Then there is some integer C ∈ N such that Cϕ(e) ∈ N for all e ∈ E(H).
Let us take F to be a family of subsets of [n] consisting of Cϕ(e) many copies of each pair (i, j)
such that (vi, vj) ∈ E(H). Each i ∈ [n] appears in at least∑

e∈E(H) : vi∈e

Cϕ(e) ≥ C

many members of F , since ϕ(e) was a fractional cover of H. Hence by Shearer’s Lemma

H(X) ≤ 1

C

∑
(i,j)∈F)

H(Xi, Xj) =
1

C

∑
e=(vi,vj)∈E(H)

Cϕ(e)H(Xi, Xj).

However, since e(G) = `, the range of (Xi, Xj) is at most 2` and hence

H(X) ≤
∑

e=(vi,vj)∈E(H)

ϕ(e) log(2`) ≤ (ρ∗(H) + ε) log(2`).

Hence, for all ε > 0 it follows that

embed(H,G) ≤ 2ρ
∗(H)+ε`ρ

∗(H)+ε

and so, by letting ε→ 0, the upper bound holds with c2 = 2ρ
∗(H).

In order to show the lower bound we will have to make use of the following consequence of
the duality of linear programming. We can think of an independent set in a graph as a set of
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vertices W such that each edge touches at most one vertex in W . Equivalent, we can think
of the characteristic function of W , ψ : V (H) → {0, 1}, where we require that for each edge
e ∈ E(H) ∑

v∈V (H) : v∈e

ψ(v) ≤ 1.

Then the independence number α(H) is the minimum of
∑

v∈V (H) ψ(v) over all such functions.

In the same way we can define a fractional independent set to be a function ψ : V (H)→ [0, 1]
such that for every edge e ∈ E(H) ∑

v∈V (H) : v∈e

ψ(v) ≤ 1,

and the fractional independence number of H, which we denote by α∗(H), to be the minimum
of
∑

v∈V (H) ψ(v) over all fractional independent sets.

It is easy to verify that for the integer versions α(H) ≤ ρ(H), since every vertex cover needs
at least one edge per vertex in an independent set, but in many cases this inequality is in fact
strict, that is α(H) < ρ(H). However, the fundamental theorem of linear programming duality
implies that the fractional versions are in fact equal, that is, α∗(H) = ρ∗(H). Using this we can
construct a graph witnessing the lower bound in Theorem 4.35.

By the above, it will be sufficient to exhibit, for each `, a graph with ≤ ` edges such
that embed(H,G) ≥ c1`

α∗(H). Let us take an optimal fractional independent set ψ such that∑
v∈V (H) ψ(v) = α∗(H), and let us assume in what follows, for ease of presentation that the

quantity (
`

e(H)

)ψ(v)

is integral for each v ∈ V . We define a graph G as follows:

For each v ∈ V (H) let V (v) be a set of size
(

`
e(H)

)ψ(v)
and let V (G) =

⋃
v∈V (H) V (v). As

the edge set of G we take all edges between V (v) and V (u) for every (u, v) ∈ E(H). hence the
number of edges in G is ∑

(u,v)∈E(H)

(
`

e(H)

)ψ(u)+ψ(v)

However, since ψ is a fractional independent set and (u, v) ∈ E(H), ψ(u) + ψ(v) ≤ 1 and hence

E(G) ≤
∑

(u,v)∈E(H)

`

e(H)
= `.

Now, any function f : V (H)→ V (G) such that f(v) ∈ V (v) for all v ∈ V (H) is an embedding
of H into G and so

embed(H,G) ≥
∏

v∈V (H)

|V (v)| =
(

`

e(H)

)∑
v∈V (H) ψ(v)

=

(
`

e(H)

)α∗(H)

.

Hence the lower bound follows with c1 =
(

1
e(H)

)ρ∗(H)
.
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4.5 Independent Sets in a Regular Bipartite Graph

Let G be a d-regular bipartite graph on 2n vertices with vertex classes A and B, and let I(G)
be the class of independent subsets of V (G). We would like to bound this number from above.
As in the case of Breégman’s Theorem, letting G be a disjoint union of Kd,d’s seems a natural
guess for a best possible graph. Indeed in G it is clear that any independent set in G consists
of an arbitrary subset taken from one side of each Kd,d. Therefore we have that

|I(G)| = (2d+1 − 1)
n
d .

The following proof of a corresponding upper bound on |I(G)| using entropy methods is due to
Kahn.

Theorem 4.36. Let G be a d-regular bipartite graph on 2n vertices with vertex classes A and
B, and let I(G) be the set of independent subsets of V (G). Then

|I(G)| ≤ (2d+1 − 1)
n
d

Proof. The basic idea of the proof is the same as in Theorem 4.2, we pick a random independent
set I and estimate the entropy H(I). As before we have that H(I) = log (|I|).

We identify I with it’s characteristic vector (Xv : v ∈ A ∪ B), note that I is determined
by (XA, XB). The idea is that, rather than splitting X into Xv for each v, we can use the
neighbourhoods of each v ∈ A as a d-uniform cover of the vertices of B, and so use Shearer’s
Lemma to express XB in terms of XN(v).

For each v ∈ A let N(v) be the neighbourhood of v in B. Each w ∈ B is in exactly d of the
sets N(v) and so we have

H(I) = H(XA|XB) +H(XB)

≤
∑
v∈A

H(Xv|XB) +
1

d

∑
v∈A

H(XN(v))

≤
∑
v∈A

(
H(Xv|XN(v)) +

1

d
H(XN(v)

)
,

where the second line follows from Shearer’s inequality, and the third since N(v) ⊂ B.

Fix some v ∈ A. Let χv be the indicator random variable of the event that I ∩ N(v) 6= ∅,
and let p := P(χv = 0), that is the probability that I ∩ N(v) = ∅. The nice thing about this
random variable is that it contains all the information about XN(v) that we need to determine
H(Xv|XN(v)).

Hence ,

H(Xv|XN(v)) ≤ H(Xv|χv)
= P(χv = 0)H(Xv|χv = 0) + P(χv = 1)H(Xv|χv = 1)

= P(χv = 0)H(Xv|χv = 0) ≤ p,

since the event χv = 1 determines that Xv = 0, and since H(Xv) ≤ log (|range(Xv)|) = 1.
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Also,

H(XN(v)) = H(XN(v), χv)

= H(χv) +H(XN(v)|χv)
≤ H(p) + (1− p) log (2d − 1),

where H(p) = p log (1/p) + (1− p) log (1/(1− p)). Putting these inequalities together gives us

H(I) ≤
∑
v∈A

(p+
1

d

(
H(p) + (1− p) log

(
2d − 1

))
.

All that remains is to maximise the quantity on the right hand side according to p. It is a
simple exercise to check that the function is convex, and to calculate its derivative, giving that
the maximum is attained at p = 2d/(2d+1 − 1), and so (1− p) = 2d − 1/(2d+1 − 1) giving that:

H(I) ≤
∑
v∈A

(p+
1

d

(
H(p) + (1− p) log

(
2d − 1

))
= n

(
p+

1

d

(
p log (1/p) + (1− p) log (1/(1− p)) + (1− p) log

(
2d − 1

)))
= n

(
p+

1

d

(
p log

(
2d+1 − 1

2d

)
+ (1− p) log

(
2d+1 − 1

2d − 1

)
+ (1− p) log

(
2d − 1

)))
= n

(
p+

1

d

(
p log

(
2d+1 − 1

)
− pd+ (1− p) log

(
2d+1 − 1

)))
= n

(
p− p+

1

d

(
(p+ (1− p)) log

(
2d+1 − 1

)))
= n

1

d
log
(

2d+1 − 1
)

log (|I|) = H(I) ≤ n.1
d

log
(

2d+1 − 1
)
,

from which the result follows.
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5 Entropy Inequalities

Given a collection of discrete random variable (Xi : i ∈ [n]) there are 2n − 1 different joint
distributions XI whose entropy we can consider. If we write h(I) := H(XI), then many of the
basic results about entropy can be expressed as linear inequalities between the h(I).

For example, by Lemmas 2.3 and 2.4

H(X,Y )−H(X) = H(Y |X) ≤ H(Y )

and so h(i, j) − h(i) − h(j) ≤ 0 for all i, j ∈ [n]. Alternatively, this is a consequence of the
inequality I(X;Y ) ≥ 0.

Let k = 2n − 1 and let us label the coordinates of Rk by the non-empty subsets of [n].
We say a vector x ∈ Rk is entropic if there exists some collection of discrete random variables
(Xi : i ∈ [n]) such that xI = h(I) for every non-empty subset I ⊆ [n]. Note that, since h(I) ≥ 0
for all I ⊆ [n] not every vector is entropic. Let us define the region

Γ∗n = {x ∈ Rk : x is entropic}.

Now, obviously Γ∗n is restricted by all the inequalities we get by taking our known entropy
inequalities and expressing them in terms of the h(I). Let us call an inequality a Shannon
inequality if it can be derived from an inequality of the form

I(XU ;XV |XW ) ≥ 0

where U, V,W ⊆ [n]. Let us first show that this makes sense, that is, every inequality of the
above form is equivalent to some linear inequality in the h(I).

Lemma 5.1. Let U, V,W ⊆ [n]. Then there exist (λI ∈ R : I ⊆ [n]) such that the inequality
I(XU ;XV |XW ) ≥ 0 is equivalent to the inequality∑

I⊆[n]

λIh(I) ≥ 0

Proof.

I(XU ;XV |XW ) = H(XU |XW ) +H(XV |XW )−H(XU , XV |XW )

= H(XU , XW )−H(XW ) +H(XV , XW )−H(XW )−H(XU , XV , XW ) +H(XW )

= H(XU , XW ) +H(XV , XW )−H(XW )−H(XU , XV , XW )

= h(U ∪W ) + h(V ∪W )− h(W )− h(U ∪ V ∪W ).

We know that every entropic x satisfies every Shannon inequality. A natural question to ask
is, does this determine whether a vector x is entropic? To that end let us define Γn to be the
set of points in Rk which satisfy every Shannon-inequality. Clearly Γ∗n ⊆ Γn.

It can be shown that Γ∗2 = Γ2 and, whilst Zhang and Yeung showed in 1997 that Γ∗3 6= Γ3,
this is only false ‘on the boundary’, in that the the closure Γ

∗
3 = Γ3.
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Note that, Γn is determined by a collection of linear inequalities and since h(∅) = 0 all of
these inequalities are homogeneous. Hence Γn forms a convex cone. Zhang and Yeung showed
that this is also true of Γ

∗
n.

Theorem 5.2. Γ
∗
n is a convex cone.

Proof. If we let Xi be random variables taking the constant value 1, then h = 0, and so Γ∗n
contains the origin. Furthermore, suppose we have two vectors x, x′ ∈ Γn. By assumption there
are random variables (Xi : i ∈ [n]) and (X ′i : i ∈ [n]) witnessing that x and x′ are in Γ∗n. We
may assume that (Xi : i ∈ [n]) and (X ′i : i ∈ [n]) are independent, and define random variables
Yi = (Xi, X

′
i) for each i ∈ [n].

Then, for any subset I ⊆ [n] we have

H(YI) = H(XI , X
′
I) = H(XI) +H(X ′I) = h(I) + h′(I) = xI + x′I .

Hence, the vector x + x′ ∈ Γ∗n, as witnessed by the family of random variables (Yi : i ∈ [n]). It
follows that Γ∗n is closed under taking integer multiples.

To show that the closure Γ
∗
n is a convex cone it thus suffices to show that for every x, x′ ∈ Γn

and every λ ∈ (0, 1) the convex combination λx+ (1− λ)x′ ∈ Γ
∗
n.

To do so, let us suppose we have families of random variables (Xi : i ∈ [n]) and (X ′i : i ∈ [n])
witnessing that x, x′ ∈ Γ∗n with (Xi : i ∈ [n]) and (X ′i : i ∈ [n]) independent. Let us take
(Yi : i ∈ [n]) and (Zi : i ∈ [n]) where each Yi is the joint distribution of k independent copies
o f Xi and similarly Zi is the joint distribution of k independent copies of X ′i, and let U be a
discrete random variable independent of the rest such that

P(U = −1) = ε;

P(U = 0) = 1− δ − ε;
P(U = 1) = δ.

Finally, let us consider the random variables (X̂i : i ∈ [n]) given by

X̂i =


Zi if U = -1

0 if U = 0

Yi if U = 1

(5.1)

Now, for any non-empty subset I ⊆ [n]

H(X̂I) ≤ H(X̂I , U)

= H(U) +H(XI |U)

= H(U) +
∑

µ∈{−1,0,1}

P(U = µ)H(X̂I |U = µ)

= H(U) + δkH(XI) + εkH(X ′I).

On the other hand
H(X̂I) ≥ H(X̂I |U) = δkH(XI) + εH(X ′I).
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and so
0 ≤ H(X̂I)−

(
δkH(XI) + εH(X ′I)

)
≤ H(U).

Letting δ = λ
k and ε = (1−λ)

k we see that

0 ≤ H(X̂I)−
(
λH(XI) + (1− λ)H(X ′I)

)
≤ H(U).

However, as ε, δ → 0, H(U) → 0, and hence by taking k arbitrarily large we can find X̂ such
that ĥI is arbitrarily close to λxI + (1− λ)x′I . Hence λx+ (1− λ)x′ ∈ Γ

∗
n.

However, Zhang and Yeung showed a year later that in fact Γ
∗
n 6= Γn for all n ≥ 4, by

exhibiting non-Shannon-inequalities that are satisfied by any set of discrete random variables.
Below we give such an inequality for five random variables.

Theorem 5.3. For any discrete random variables A,B,C,D,E

2I(A;B) ≤ I(A,E;C|B)+I(A;B|E)+I(A;B)−I(A;C)+I(A;E|B)+I(B;E|A)+I(A;B|D)+I(C;D).

Taking C = E we get the following inequality for 4 random variables

Corollary 5.4. For any discrete random variables A,B,C,D

2I(A;B) ≤ 3I(A;B|C) + I(A;B|D) + I(A,B;C) + I(C;D).

Let us first show that this is not a Shannon-inequality. A little trick to make this easier, and
an interesting thing to note anyway, is that given a collection of random variables (Xi : i ∈ [n])
the function h : 2[n] → R we defined above is a polymatroid.

That is

1. h(∅) = 0;

2. h(I) ≤ h(J) if I ⊆ J ;

3. h(I) + h(J) ≥ h(I ∩ J) + h(I ∪ J).

The first two are apparent and for the third let us write A = I ∩ J , B = I \ J and C = J \ I.
Then we need to show

H(XA, XB) +H(XB, XC) ≥ H(XA) +H(XA, XB, XC).

However, by Lemma 2.4

H(XA) +H(XA, XB, XC) = 2H(XA) +H(XB, XC |XA)

≤ 2H(XA) +H(XB|XA) +H(XC |XA)

= H(XA, XB) +H(XA, XC)

as claimed.
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In fact, the converse is also true, in that every polymatroid satisfies the Shannon-inequalities.
Indeed, if h is a polymatroid function and U, V,W ⊆ [n] then by 2. and 3. we have hat

h(U ∪W ) + h(V ∪W ) ≥ h(U ∪ V ∪W ) + h((U ∪W ) ∩ (V ∪W )) ≥ h(U ∪ V ∪W ) + h(W )

and hence (See Lemma 5.1)

h(U ∪W ) + h(V ∪W )− h(W )− h(U ∪ V ∪W ) ≥ 0.

So, to show that Corollary 5, and hence Theorem 5.3, is a non-Shannon-inequality it will
be sufficient to give a polymatroidal h which doesn’t satisfy it, or more precisely, if we let
X1 = A,X2 = B, . . . ,X5 = E, then Theorem 5.3 can be rewritten as a inequality∑

I⊂[n]

λiH(XI) ≤ 0

and it will be sufficient to give a polymatroid h : 2[n] → R such that∑
I⊂[n]

λih(I) > 0.

Let h be as follows:

� h(i) = 2 for i ∈ [4];

� h(i, j) = 3 for {i, j} 6= {3, 4};

� h(I) = 4 otherwise.

It is a simple check that h is a polymatroid, and that h does not satisfy the inequality from
Corollary 5. Indeed, I(A;B) = H(A) + H(B) − H(A,B) = 2 + 2 − 3 = 1. However, the two
terms of the form I(X;Y |Z) can be seen to be zero, since all pairs but C,D have H(X,Y ) = 3
and so I(X;Y |Z) = H(X,Y ) + H(Y,Z) − H(X,Y, Z) − H(Z) = 3 + 3 − 4 − 2 = 0 for those
two terms. Also, I(A,B;C) = H(A,B) + H(C) − H(A,B,C) = 1 and finally I(C;D) =
H(C) +H(D)−H(C,D) = 2 + 2− 4 = 0. Putting this all together we see that

2 = 2I(A;B) > 3I(A;B|C) + I(A;B|D) + I(A,B;C) + I(C;D) = 1.

Proof of Theorem 5.3. Let us first note that E only appears in terms of the inequality that we
wish to prove together with A and B. This allows us to ‘redefine’ E so that it is independent
of C and D, conditioned on A and B. More precisely we can define a random variable E′ such
that the following holds

� I(A,B;E) = I(A,B;E′) and I(A;B|E) = I(A;B|E′);

� I(C,D;E|A,B) = 0.
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Formally, we can do this by defining the conditional distribution of E′ given A,B,C,D to be
the conditional distribution of E given A and B. That is, for every a, b, c, d, e

P(E′ = e|A = a,B = b, C = c,D = d) = P(E = e|A = a,B = b).

It is then a simple check that the two conditions above hold for E′, and hence to prove the
inequality for arbitrary A,B,C,D,E it will be sufficient to prove it under the additional as-
sumption that I(C,D;E|A,B) = 0. Note that this is reason we prove Corollary 5 via Theorem
5.3.

The theorem now reduces to verifying a series of inequalities, although hopefully we can split
it into a number of steps that will make sense. Firstly we note that, since I(C,D;E|A,B) = 0
we have that I(C,D;E) ≤ I(A,B;E). Indeed firstly we note that for any X,Y, Z the following
holds:

I(X,Y ;Z) = H(X,Y ) + H(Z)−H(X,Y, Z)

= H(X|Y ) + H(Y ) + H(Z)−H(X,Z|Y )−H(Y )

= I(X;Z|Y ) + H(Z)−H(Z|Y )

= I(X;Z|Y ) + I(Y ;Z).

Hence we can calculate I(A,B,C,D;E) in two ways. Firstly

I(A,B,C,D;E) = I(C,D;E|A,B) + I(A,B;E) = I(A,B;E),

and hence

I(A,B;E) = I(A,B,C,D;E) = I(A,B;E|C,D) + I(C,D;E) ≥ I(C,D;E). (5.2)

We will use this to verify the next inequality

I(C;E) + I(D;E) ≤ I(A,B;E) + I(C;D). (5.3)

By (5.2) it will be sufficient to show that

I(C;E) + I(D;E) ≤ I(C,D;E) + I(C,D)

However

I(C;E) + I(D;E) = H(C) + H(E)−H(C,E) + H(D) + H(E)−H(D,E)

= H(C,D) + I(C;D) + 2H(E)−H(C,E)−H(D,E)

= I(C,D;E) + I(C,D) + H(E) + H(C,D,E)−H(C,E)−H(D,E)

= I(C,D;E) + I(C,D) + H(D|C,E)−H(D|E)

≤ I(C,D;E) + I(C,D).

Finally we claim the follow inequality holds

I(A;B) ≤ I(A;B|C) + I(A;B|E) + I(C;E), (5.4)

and so by symmetry also

I(A;B) ≤ I(A;B|D) + I(A;B|E) + I(D;E), (5.5)
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Note that, by adding (5.4) and (5.5) we see that

2I(A;B) ≤ I(A;B|C) + I(A;B|D) + 2I(A;B|E) + I(C;E) + I(D;E),

and by (5.3) we could conclude that

2I(A;B) ≤ I(A;B|C) + I(A;B|D) + 2I(A;B|E) + I(A,B;E) + I(C;D).

as claimed.

So, it remains to prove (5.4). Note that, I(C,D;E|A,B) = 0 implies that I(C;E|A,B) = 0.
Re-writing this in terms of entropy we get the following equality

H(A,B,C) + H(A,B,E) = H(A,B) + H(A,B,C,E)

So now we can calculate

I(A;B|C) + I(A;B|E) + I(C;E)

= H(A,C) + H(B,C)−H(C)−H(A,B,C) + H(A,E) + H(B,E)−H(E)−H(A,B,E) + H(C) + H(E)−H(E,C)

= H(A,C) + H(B,C) + H(A,E) + H(B,E)−H(E,C)−H(A,B,C,E)−H(A,B)

= I(A;B|E,C)−H(A,E,C)−H(B,E,C) + H(A,C) + H(B,C) + H(A,E) + H(B,E)−H(A,B)

≥ H(A,C) + H(B,C) + H(A,E) + H(B,E)−H(A,B)−H(A,E,C)−H(B,E,C)

= H(A,C) + H(A,E)−H(A)−H(A,C,E) + H(B,C) + H(B,E)−H(B)−H(B,E,C) + H(A) + H(B)−H(A,B)

= I(C;E|A) + I(C;E|B) + I(A;B) ≥ I(A;B).
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